
Visual Comput (2007) 23: 143–154
DOI 10.1007/s00371-006-0089-0 O R I G I N A L A R T I C L E

Angel Domingo Sappa
Miguel Angel Garcia

Generating compact representations of static
scenes by means of 3D object hierarchies∗

Published online: 19 December 2006
© Springer-Verlag 2006

A.D. Sappa (�)
Computer Vision Center, Edifici O Campus
UAB, 08193 Bellaterra, Barcelona, Spain
angel.sappa@cvc.uab.es

M.A. Garcia
Department of Informatics Engineering,
Autonomous University of Madrid, Cra.
Colmenar Viejo, Km. 15, 28049 Madrid,
Spain
miguelangel.garcia@uam.es

Abstract This paper presents a new
heuristic algorithm for computing
a compact hierarchical representation
of the objects contained in a 3D static
scene. The algorithm first builds
a fully-connected adjacency graph
that keeps the costs of grouping
the different pairs of objects of
the scene. Afterward, the graph’s
minimum spanning tree is computed
and its edges sorted in ascending
order according to their cost. Next,
from that sorted list, a cost-based
clustering technique is applied, thus
generating new objects at a higher
level in the hierarchy. A new object
can be defined after merging two
or more objects according to their
corresponding linking costs. The
algorithm starts over by generating
a new adjacency graph from those
new objects, along with the objects
that could not be merged before. The
iterative process is applied until an
adjacency graph with a single object

is obtained. The latter is the root of
the hierarchical representation. Bal-
ance and coherence of the hierarchy,
in which spatially close objects are
also structurally close, is achieved by
defining an appropriate cost function.
The proposed technique is evaluated
upon several 3D scenes and compared
to a previous technique. In addition,
the benefits of the proposed technique
with respect to techniques based on
octrees and kd-trees are analyzed in
terms of a practical application.

Keywords World modeling · Object
clustering · Hierarchical represen-
tation · Minimum spanning tree ·
Minimum distance computation

1 Introduction

A wide variety of disciplines, such as robotics, virtual re-
ality or computer graphics, share the common need to deal
with complex 3D scenes composed of large amounts of
objects in order to perform a variety of tasks that involve

∗This work has been partially supported by the Spanish Ministry of
Education and Science under projects TRA2004-06702/AUT and DPI2004-
07993-C03-03. The first author was supported by The Ramón y Cajal
Program.

some type of spatial reasoning, such as collision detec-
tion, visibility analysis or path planning, to mention a few
(e.g., [5, 8, 9, 12, 13, 15, 17]). If those tasks are to be car-
ried out in real time, it is necessary to organize the scene’s
objects in some appropriate way to speed up the whole
process.

Hierarchical representations are one of the most pop-
ular spatial organizations, as they allow to keep complex
information at different abstraction levels. In particular,
hierarchical models have been proposed as an efficient
and compact representation to tackle a multitude of prob-

144 A.D. Sappa, M.A. Garcia

lems within the 3D modeling community. Basic geomet-
ric primitives, including bounding boxes or spheres, have
been utilized to decompose either a scene or a single ob-
ject into a hierarchical structure.

Hence, many techniques have already been proposed
in the 3D modeling literature to automatically gener-
ate hierarchical structures. These approaches can be
broadly classified into space-oriented and object-oriented
schemes. Although they both pursue the generation of
a hierarchical representation, their underlying philosophy
is significantly different as it is briefly described in Sect. 2.

This paper presents an object-oriented technique for
computing a compact hierarchical representation of the
objects contained in a 3D scene that retains their spatial
distribution. It is based on a heuristic cost function that
minimizes the empty bounding space by relating the vol-
ume of clustered objects to the volume of the resulting
cluster. Graph theory is also used to compute the best set
of connections that interrelate all the objects contained in
the scene with a minimum total cost.

The algorithm assumes that every object contained in
the scene is represented by a single bounding sphere or,
alternatively, in case that a tighter fit is required, by a col-
lection of spheres [13]. Initially, a fully-connected graph
that keeps the costs of grouping the different pairs of input
spheres is determined. Then, the minimum spanning tree
of that graph is computed and its edges sorted in ascending
order of cost. Afterward, a cost-based clustering technique
generates new spheres at a higher level of the hierarchy by
merging spheres at the current level. In case the new level
contains several spheres, the algorithm starts over at that
new level by generating a new fully-connected graph and
applying the aforementioned stages again. Otherwise, if
the new level contains a single sphere, the iterative process
stops with that sphere being the root of the hierarchical
representation.

The proposed algorithm is more advantageous than
previous proposals since: (1) a more realistic cost meas-
urement function is defined, (2) graph theory is used to
find the best set of clusters, (3) efficiency is higher as the
costs between all objects of the scene are computed and
updated after every new level generation stage, (4) there
are not user-tuned parameters and (5) the generated tree is
n-ary instead of binary and, thus, it is shallower and more
representative of the physical distribution of the objects
contained in the scene.

The remainder of the paper is organized as follows.
The next section summarizes previous approaches. The
proposed algorithm is described in Sect. 3. Section 4
presents experimental results and a comparison with the
technique described in [21]. In addition, comparisons with
space-oriented hierarchical representations based on oc-
trees and kd-trees are also presented from the point of
view of the performance of a particular application (find
the nearest sphere to a given segment). Finally, conclu-
sions and further improvements are given in Sect. 5.

2 Previous approaches

Space-oriented schemes, usually based on top-down re-
finement, consider a given scene as a whole and progres-
sively subdivide its volume at every level of the hierarchy.
The most popular representations in this category are: bi-
nary space partitioning trees [11], octrees [16], extended
octrees [3] and kd-trees [1]. However, since the objects
contained in the scene are considered as a part of it and
not treated as single entities, many basic tasks that require
the processing of individual objects (e.g., minimum dis-
tance computation) may suffer from a significant downfall
in performance, as it will be illustrated in Sect. 4.2.

Space-oriented approaches require the definition of
a termination criterion. In general, termination criteria are
specified by end-users by means of two thresholds that de-
termine when a node becomes a leaf: (1) when the number
of objects contained in that node is lower than or equal
to a user-defined threshold, and (2) when the tree’s depth
reaches a second user defined threshold. Although some
work has been done for determining automatic termina-
tion criteria (term coined in [20]), it still remains an open
problem. The work done in [20] proposes a cost model
that can be used to predict the correct termination point,
although no particular algorithm is described. A step for-
ward was presented in [10], where an empirical algorithm
based on experiments with different scenes and amounts
of objects was proposed. But again, the automatic termi-
nation criterion is not fully reached due to the fact that two
values need to be tuned, with these constants being chosen
according to the proposed experiments.

In turn, object-oriented schemes focus on the indi-
vidual objects contained in the scene rather than on the
scene as a whole. Two basic approaches can be distin-
guished. The first approach consists of decomposing the
scene’s objects into hierarchies of basic geometric prim-
itives (e.g., [2, 9, 13–15, 17]). This is referred to as intra-
object representations [7]. The majority of object-oriented
schemes that have been proposed so far belong to this cat-
egory. Alternatively, the second approach does not pretend
to decompose objects into simpler parts, but to group them
appropriately. Hierarchies generated in this way are re-
ferred to as inter-object representations [7]. The current
paper falls into this second category.

Although both inter-object and intra-object representa-
tions have been conceived for different applications, they
can complement each other. For example, a single ob-
ject can be first represented by means of a hierarchy of
bounding volumes (intra-object representation). Then, in
a second step, all the objects contained in the scene can be
interrelated, giving rise to an inter-object representation of
that scene. In this case, each leaf of the inter-object hier-
archy will be the root of an intra-object representation that
describes a single object.

Inter-object representations aim at describing a scene
by interrelating the objects contained in it in a structure

Generating compact representations of static scenes by means of 3D object hierarchies 145

that reflects their spatial distribution and, ideally, unveils
the functional organization of the scene. The main objec-
tive is to obtain a hierarchical structure that agrees with
human intuition and clusters the given objects according
to their spatial location.

Hierarchical inter-object representations have been
successfully proposed, for example, for solving complex
tasks in robotics under kinematic and dynamic constraints
(e.g., [4, 5]). In these works, however, a hierarchical repre-
sentation of the objects contained in the scene is required
as an input to the algorithm, which only focuses on the
use of those representations for a path search algorithm,
without paying attention to the way in which they are
generated (no clues about whether they were manually or
automatically generated are given).

Approaches based on inter-object representations usu-
ally follow a bottom-up strategy. For instance, [21] starts
with the bounding volumes (e.g., spheres, convex hulls)
of the objects contained in the 3D scene and groups them
into bigger bounding volumes by applying heuristic rules
that favor the progressive growth of those volumes. The
algorithm goes over all the possible pairings of objects in
the scene and, for those whose distance is below a certain
moving and progressively larger threshold, it computes
a grouping cost. The pair of objects with the lowest cost is
grouped into a new object and the costs between the new
and the old objects are recomputed. The algorithm stops
when a single object is left. Thus, a binary tree is gener-
ated. At every iteration, the cost function defined in [21]
takes into account three heuristics that favor the grouping
of the candidate pair of objects whose bounding volume
has: (1) the smallest volume, (2) the smallest amount of
empty space inside and (3) the most similar ratio between
the size of the two objects that constitute the candidate
pairing. The cost function is defined by a weighted aver-
age of those three criteria. An important drawback of the
algorithm is that the topology of the final hierarchy is
highly dependent on a large number of user-tuned param-
eters that intervene in the definition of the aforementioned
heuristics.

A different approach was presented in [7]. In this tech-
nique, a minimum spanning tree (MST) is extracted from
a fully-connected graph that keeps the cost of grouping
every pair of objects of the scene. The cost function is
based on Newton’s law of universal attraction. From the
MST, an n-ary tree is finally generated. This approach

Fig. 1. Illustrations of the algo-
rithm’s stages

is very efficient as the cost between the objects of the
scene is only computed once. Furthermore, it has no pa-
rameters that have to be carefully tuned. However, the
lack of a cost update as the grouping proceeds becomes
a disadvantage when large, complex scenes are consid-
ered. This favors the generation of non-intuitive group-
ings when both large and small spheres coexist in the
scene. A more efficient approach to the problem of inter-
object grouping is presented in this paper as it is explained
below.

3 3D object hierarchies

This section presents a new algorithm for generating
a hierarchical clustering of the objects contained in a com-
plex 3D scene. This algorithm follows a bottom-up strat-
egy that progressively groups the bounding spheres
corresponding to the original objects in order to pro-
duce a tree. Each node of the tree represents a level of
abstraction in the scene and has associated the min-
imum bounding sphere that contains its children
nodes.

The algorithm consists of an iterative process that
builds each level of the hierarchy by grouping the bound-
ing spheres contained at the previous level. The process
stops when a single bounding sphere is left. Three stages
are subsequently applied at every level. In the first stage,
a fully-connected adjacency graph that keeps the cost of
grouping the different pairs of spheres present at the
current level is built. In the second stage, the minimum
spanning tree (MST) of that graph is computed. In the
last stage, the edges of the MST are sorted in ascend-
ing order according to their costs. Nodes linked by those
edges are merged whenever a merging criterion is satis-
fied. As a result, a new level of the hierarchy is generated,
which contains the new spheres and the ones that could
not be grouped. The same three stages are then applied
to the next level. These stages are illustrated in the flow
chart shown in Fig. 1 and described below after introduc-
ing some notation and concepts used throughout the rest of
the paper.

Let S = {S1, . . . , Sn} be the set of n spheres present at
a certain level λ of the hierarchy. Every sphere Si has ra-
dius ri and is centered at a 3D position Ci . Those spheres
will initially be the bounding spheres of the original ob-

146 A.D. Sappa, M.A. Garcia

Fig. 2. Illustrations of filling factors computed according to [21]. In the three situations, the left and right configurations have similar filling
factors, while the real filling is significantly different

jects contained in the scene. If two spheres Si and Sj are to
be grouped, they are replaced by their smallest bounding
sphere Sij , which has radius rij and center Cij :

rij = ri Cij = Ci if (‖Ci −C j‖2 +rj) ≤ ri

rij = rj Cij = C j if (‖Ci −C j‖2 +ri) ≤ rj (1)
rij = (ri +rj +‖Ci −C j‖2)/2 and

Ci, j = Ci −C j

‖Ci −C j‖2
(rij −rj)+C j otherwise.

In case several spheres are to be grouped, they are sub-
stituted for the smallest bounding sphere Sb that contains
them all. The radius and center of the new sphere are re-
spectively computed through a fast technique based on the
algorithm proposed in [6]. This algorithm computes the
smallest enclosing ball of a given point set. That point set
is constituted by the spheres’ center points enlarged ac-
cording to their corresponding radii.

3.1 Adjacency graph generation

The first stage of the grouping process generates a fully
connected weighted graph in which every node represents
a sphere present at level λ. Every pair of nodes in the graph
is linked with an edge whose weight expresses the cost of
grouping the bounding spheres corresponding to the two
nodes linked by the edge.

The key point of this first stage is the formulation of
the grouping cost function that defines the weight asso-
ciated with every graph’s edge, since, in the end, it will
determine the order in which spheres will be grouped.
This function must be properly defined in order to achieve
a well balanced and spatially coherent hierarchy. Previous
schemes propose cost functions based on: (a) the attrac-
tion force between two objects [7]; (b) a heuristics that
favors that objects of similar size are merged, beginning
with those with the smallest volume [21]; (c) a relationship
between the area of the enclosed spheres (children) and
the corresponding enclosing one (father) (e.g., [8, 10, 20]).
As it was stated in [12], techniques based on surface area
are commonly used for ray tracing applications, since the
probability that a ray will intersect a bounding volume is
proportional to its surface area. For collision detection

applications, however, volume needs to be minimized ex-
pecting that it is proportional to the probability of inter-
secting other objects.

Thus, we define a cost function Eq. 5 that depends on
both the volume of the smallest sphere that contains the
spheres to be grouped, and a filling factor defined as the
ratio between both the volume occupied by those spheres
and the volume of their smallest bounding sphere. In other
words, the proposed filling factor is a measure of empty
space, as opposed to [21], where the filling factor is de-
fined as the ratio between the diameter of the bound-
ing sphere (D) and the sum of diameters of the merged
spheres (di +dj).

Figure 2 illustrates some situations where the filling
factor F proposed in [21] is not a good indication of the
real filling. For example, the smallest bounding sphere
in Fig. 2b [right grouping] should be the one with the best
filling factor. However, both bounding spheres have the
same factor (F = 1). The same occurs in Figs. 2a and 2c:
the configurations on the right (i.e., Figs. 2a [right group-
ing] and 2c [right grouping]) have better filling than the
ones on the left (i.e., Figs. 2a [left grouping] and 2c [left
grouping]), although their filling factors computed accord-
ing to [21] are approximately the same.

Another advantage of the proposed technique over the
one defined in [21] is that the proposed filling factor is pre-
served in the hierarchy as an indicator for further group-
ing. Thus, every sphere Si is associated with a filling fac-
tor Fi . The bounding spheres corresponding to the original
objects of the scene have a filling factor equal to one. In
turn, when a set of spheres ζ = {Si |1 ≤ i ≤ n} is grouped,
the filling factor of their minimum bounding sphere, Sb, is
formulated as:

Fb =
((∑

ζ

FiVoli
)

−
(∑

ζ

Voloverlap(i, j)

))/
Volb, (2)

where Voli , Fi correspond to the volume and filling fac-
tor of every sphere to be grouped respectively; Volb is the
volume of Sb; and Voloverlap(i, j) is the volume defined by
the overlap (intersection) between every pair of spheres
from ζ . Assuming Si and Sj are two spheres from ζ ,
their overlapping volume, Voloverlap(i, j), is computed as
the union of the volumes of two spherical caps (Fig. 3):

Generating compact representations of static scenes by means of 3D object hierarchies 147

Fig. 3. a Portion of a spherical cap cut off by a plane. b Illustration of two spherical caps defining the volume of overlap (intersection)
between two spheres

Voloverlap(i, j) = Fi Vci + Fj Vc j . The volume of a spherical
cap is defined as:

Vci = π

6

(
3r2

c +h2
ci

)
hci, (3)

where rc is the radius of the cap’s base and hci is the cap’s
height, Fig. 3a. The radius of the cap (circle of intersection
between the two overlapped spheres) and the heights of
the two caps depend on the distance d between the centers
of the two spheres and their size. If the cap corresponding
to the sphere of radius ri has height hci , and the cap of the
sphere of radius rj has height hc j , Fig. 3b, the radius of the
common circle rc is computed as follows:

rc =
√(

(ri +rj)2 −d2
)(

d2 − (ri −rj)2
)

2d
, (4)

where hci and hc j are defined as: hci = r2
j −(ri−d)2

2d , hc j =
r2
i −(rj−d)2

2d ; Vci and Vc j are respectively computed from
(hci , rc) and (hc j , rc) by applying Eq. 3.

Besides taking into account the previous filling factor,
the proposed cost function also considers the size of the

Fig. 4. a Example of adjacency graph and its MST. b List of the MST’s edges sorted in ascending order of cost

bounding spheres, Sb, in order to enforce a monotonous
growth of the groups of spheres. Let rb be the radius of the
smallest bounding sphere, which contains all the spheres
from ζ . The proposed cost function is defined as:

Cb = r3
b/Fb (5)

with Fb computed according to Eq. 2. The smaller and
closer the spheres are, the lower their grouping cost will
be. Intuitively, spheres with small merging costs should
tend to be grouped together as they would denote close
objects in the scene. This process is intended to create
a hierarchy in which leaves, which represent the original
objects, are progressively grouped until the scene’s bound-
ing sphere at the root of the tree is obtained. The pro-
posed strategy favors that small clusters are created first,
as well as a progressive growth of the radius of the re-
sulting spheres when the hierarchy’s level is reduced. By
using a more realistic filling factor, objects are grouped in
a more intuitive way than in [21]. Finally, merging spheres
with lowest cost Eq. 5 involves maximizing the corres-
ponding filling factor; in other words, this strategy mini-

148 A.D. Sappa, M.A. Garcia

mizes the empty volume and, hence, the total volume. This
minimizes the probability of intersecting other spheres as
suggested in [9].

3.2 Minimum spanning tree generation

Once an adjacency graph has been created, the next ob-
jective is the computation of its minimum spanning tree.
The minimum spanning tree (MST) of a graph G is the
acyclic subgraph of G that contains all the nodes of G
and such that the sum of the grouping costs Eq. 5 asso-
ciated with its edges is minimum. The MST of a graph
with M edges and N nodes can be efficiently computed in
O(M log N) by applying Kruskal’s algorithm [19]. In our
case, the cost is O(N2 log N). Figure 4a shows an example
of a fully-connected adjacency graph and its MST – no-
tice that cost values associated with the different edges are
illustrative but not computed with the proposed cost func-
tion. Figure 4b depicts the list of the MST’s edges sorted
in ascending order of cost.

An advantage of using MSTs for finding the best con-
nectivity among the nodes of the graph (spheres) is that
user-defined parameters are avoided. Alternatively, find-
ing the best connectivity with a technique such as the
k-nearest neighbors, although similar in philosophy, could
produce a different result since disconnected subgraphs
could be obtained instead of a single tree connecting every
single node. Finally, thresholds such as the number of con-
nections per node or the maximum distance should be
defined by the user when the k-nearest neighbors tech-
nique is used.

3.3 Node clustering and new level generation

The outcome of the previous stage is a list of edges sorted
in ascending order according to their associated cost. The
current stage groups the nodes linked by those edges by
applying a merging criterion (Fig. 5). A new level of the
hierarchy is then created.

In the example given in Fig. 4, the nodes linked by the
first edge in the sorted list (G and D) are initially merged,
defining thus a new candidate object for the new level.
This candidate will become a new object in the new level
in case that no new nodes are merged to this first cluster.
Otherwise, if a new node is merged, that initial candidate
object will be removed and a new candidate computed by
merging the three nodes: the two initially merged nodes
plus the new added node. The clustering algorithm pro-
ceeds by testing the merging criterion described in Fig. 5
upon every edge from the sorted list. In the end, all graph
nodes will have been eventually grouped into new objects
and the clustering stage at the current level concludes.

The next level of the hierarchy is then created with
the new objects (defined by their corresponding bounding
spheres and filling factors) and the ones that could not be
merged at the current level. In case the new level contains

Fig. 5. Pseudo-code of the merging criterion used to group two
nodes at the same level. This is applied to every edge of the current
MST

two or more objects, the process starts over from the adja-
cency graph generation stage (Sect. 3.1).

Figure 6 shows an illustration of the final hierarchical
representation after applying the proposed algorithm to
the example presented in Fig. 4. An object in a new level
can be defined by a binary merge, an n-ary merge, or a sin-
gle object from the previous level. Hence, in the worst
case, where every new object in the hierarchy is defined
by a binary merging, the depth of the tree generated by the
proposed technique is the same as a binary tree.

Fig. 6. Final hierarchical representation from the MST and sorted
list shown in Fig. 4

4 Experimental results

The proposed technique has been tested upon several 3D
scenes and compared to the technique presented in [21].
Figure 7(top) shows a scene with 24 objects (the cor-
responding vrml model can be obtained by contacting
the authors). Each object is represented by its bound-
ing sphere. The computed hierarchical representation, pre-

Generating compact representations of static scenes by means of 3D object hierarchies 149

Fig. 7. (top) Original scene defined by 24 objects (i.e., spheres).
(bottom) Levels of the computed hierarchical representation (dark
solid spheres correspond to objects merged at the previous level;
objects merged at the current level are represented in dark wire-
frame)

sented in Fig. 7(bottom), contains four levels. Dark solid
spheres correspond to objects merged at the previous
level. Dark wireframe spheres represent objects that will
be merged at the current level. Finally, light wireframe
spheres represent non-merged objects at that level. The
four levels are represented at different scales. They were
computed in 3.85 s on a 3.2 GHz Pentium IV PC. Note
that more perceptual groupings could be obtained at the
different levels by using different node clustering crite-
ria (Fig. 5) (e.g., by adding constraints in the size of the
resulting spheres).

In order to better appreciate the clustering capabili-
ties of the proposed technique, three different scenes have
been tested. These scenes contain six randomly placed
spheres over a plane, each with a random size. The com-
puted hierarchies are presented in Fig. 8. The different lev-
els are represented at different scales. As it was expected,
the hierarchies in the three examples are obtained by clus-
tering the objects at the different levels following a kind
of perceptual grouping. Note that although these scenes
are defined by a few objects, they could be understood as
a local grouping of a bigger scene.

Fig. 8. Hierarchical representations corresponding to three different
scenes containing six objects randomly placed with a random size.
Notice that although the object size and distribution is different in
these scenes, the hierarchies computed with the proposed technique
cluster the objects as it could be expected, i.e., a kind of perceptual
grouping is obtained

Fig. 9. Hierarchical representation of a scene defined by 100 objects
randomly placed with a random size (dark solid spheres corres-
pond to objects merged at the previous level; objects merged at the
current level are represented in dark wireframe)

Figure 9(top) presents the resulting levels of a scene
that contains 100 elements constituted by randomly placed
spheres of random size. Figure 9(bottom) shows some of
the generated levels. The hierarchical representation of
this synthetic scene has 7 levels that were computed in
18.96 s.

150 A.D. Sappa, M.A. Garcia

4.1 Comparison

The proposed technique has been compared with both
a version of the algorithm presented by Xavier [21] and
the technique presented in [7]; no careful tuning of the
user-defined parameters required by [21] has been done
and no space partitioning has been considered either
in [21] or in the proposed technique. The reason for the
former is that no hints were given in [21] for deciding
the values of those parameters in order to obtain opti-
mal performance. The motivation for not applying space
partitioning is that the performance achieved with it is
strongly related to the choice of the aforementioned user-
defined parameters. Since no optimal parameter tuning
can be granted in general, the space partition may not
help improve efficiency and may even lead to performance
degradation owing to the overload due to the generation
and management of the data structure.

Qualitatively, the algorithm presented in [21] produces
results comparable to the ones obtained with the pro-
posed algorithm. However, every time a new cluster is
created, Xavier’s algorithm recomputes the costs between
the bounding volume of that cluster and the other ob-
jects of the scene (both individual objects and already
existing clusters). In order to speed-up the process, a dy-
namic threshold that determines a maximum accepted size
is kept. All the objects whose size is larger than that
threshold are discarded from the computation of the cost
function at that step. This dynamic threshold is progres-
sively increased. In the worst case, where all the objects
have the same size, this dynamic threshold does not dis-
card any objects. Moreover, every time a pair of objects is
grouped, the cost between the new object and the previous
ones must be recomputed and the new object must be in-
serted in the sorted list of candidate object pairs. The cost
of this iterative process is O(N3).

Conversely, the most expensive part of the proposed
algorithm is the computation of costs between all the ob-
jects of the scene, but this stage is applied over a decreas-
ing number of objects (the decreasing rate is considerably
higher than Xavier’s algorithm, where the cost needs to
be recomputed after every single merging). The remaining
stages are very efficient, leading to a better performance
of the whole process; in the worst case (only binary clus-
ters) the cost of the proposed technique is O(N2 log N).
This cost reduction, together with the improvement in the
filling factor function and the lack of user-tuned param-
eters make the proposed technique particularly attractive
in front of the one proposed in [21]. Obviously, a careful
tuning of parameters and the application of space parti-
tioning would improve the performance of Xavier’s tech-
nique, but optimal tuning may be difficult to achieve in
practical situations.

The proposed algorithm is also advantageous with re-
spect to [7]. Although comparable representations were
obtained for scenes containing few objects, the hierarch-

ical representations, as well as the CPU times, are consid-
erably better with the proposed algorithm when complex
and large scenes are considered. These advantages are em-
phasized when a particular scene containing equally-sized
objects, regularly distributed over the space, is considered;
actually, neither [21] nor [7] can appropriately handle this
situation.

The advantages of the proposed algorithm with re-
spect to [7] are due to the combination of two reasons:
On the one hand, the new strategy used for clustering ob-
jects, which is applied at every iteration over the MST
corresponding to the current adjacency graph, helps ob-
tain a more realistic grouping. In other words, the corres-
ponding object distribution at every iteration is taken into
account for clustering them at the current level. Recall
that in [7], the information related to the object geom-
etry and distribution was only considered in the first stage.
Therefore the algorithm proceeds by merging the objects
in further levels without updating the information related
to the object geometry and distribution. This lack of up-
date leads to wrong results in those scenes containing large
amounts of objects. On the other hand, the proposed cost
function, as well as the use of the filling factor for every
sphere through the whole structure, helps to obtain bal-
anced hierarchical representations. Notice that in [7], no
filling information was taken into account, and was not
preserved during the hierarchy generation process.

4.2 Object-oriented versus space-oriented hierarchical
representations

The proposed object-oriented technique has been com-
pared with two space-oriented hierarchical representations
respectively based on octrees and kd-trees (see illustra-
tion in Fig. 10) in terms of a practical application: find out
whether a segment defined by two points randomly placed
in space intersects or not with the computed hierarchy. In
case the root’s sphere is intersected, an iterative process is
applied until either no sphere is intersected by the segment
or all the intersected spheres are leaves of the tree. In both
cases, the algorithm returns the nearest sphere to that seg-
ment and the total number of checked spheres (iterations).
In order to compute an average number of iterations, the
aforementioned process is repeated 500 times, every time
with a different segment.

Although the tested space-oriented hierarchical rep-
resentations are built in a top-down fashion, respectively
following an octree and a kd-tree, both are finally repre-
sented by means of a hierarchy of spheres bounding the
leaves and internal nodes in order to be able to make a dir-
ect comparison with the proposed technique.

Two series of scenes were used for the comparisons;
they were defined by sets of spheres ranging from 50 to
500 in the first case and from 50 to 3000 in the second
case. The first one consists of scenes defined by randomly
distributed spheres, Fig. 11a, while, in the second series,

Generating compact representations of static scenes by means of 3D object hierarchies 151

Fig. 10. a Second level of an object-oriented representation of a scene defined by 24 objects (points P1 and P2 were randomly placed over
opposite faces of the bounding box). b The fourth level of a kd-tree representation of the same scene. c Fourth level of the corresponding
octree representation

Fig. 11. a Example of a scene defined by a set of 500 randomly distributed spheres. b Scene defined by four clusters containing different
amounts of randomly distributed spheres, 500 spheres in total

spheres are distributed into four clusters, such that every
cluster contains different amounts of randomly distributed
spheres: 5% of the total into the first cluster, and 11.5%,
21.5% and 62% into the second, third and fourth clus-
ters, respectively, Fig. 11b. In both cases, for every scene,
500 random segments were used for computing the aver-
age number of iterations and CPU time. As indicated be-
fore, these random segments are defined by two random
points moving over opposite faces of the bounding box.
The pair of considered faces are the ones with the smallest
area.

The octree-based representation is recursively ex-
panded until its leaves are one third the size of the smallest
input sphere. The kd-tree-based representation is gener-
ated by partitioning the input space with planes (see [1]
for more details). This set of input spheres is split into two
subsets with a vertical plane, YZ, through the mean x coor-
dinate of the aforementioned set of spheres’ center points.
A recursive procedure is then applied over the resulting
subsets of spheres by first partitioning them according to

the mean of their y coordinates (X Z plane) and then by the
mean of their z coordinates (XY plane). This procedure
starts again over the x coordinates and stops when every
subset contains a single sphere. Although planes were
used for partitioning the given scene, the final represen-
tation contains spheres at the leaves as well as at internal
nodes. As mentioned above, leaf’s spheres are used to
represent every single input object whereas spheres asso-
ciated with internal nodes are defined as the minimum ball
bounding all the descendants from that node. This hierar-
chy of spheres is used for comparing the three techniques.

In order to determine the closest sphere to a segment,
a search algorithm explores the given hierarchical struc-
ture (octree, kd-tree or proposed technique) starting from
its root. At every iteration, those spheres intersected by the
given segment are removed and the distances from the seg-
ment to their children are computed. This iterative process
is applied until either no sphere is intersected by the seg-
ment or all the intersected spheres are leaves of the tree. In
both cases, after finishing this iterative process, the near-

152 A.D. Sappa, M.A. Garcia

est sphere and the amount of iterations (number of spheres
checked during the process) are returned as a result.

Table 1 presents the average number of iterations ne-
cessary to find the nearest sphere to 500 random segments
when scenes containing randomly distributed spheres are
considered. The difference between the number of iter-
ations required by the proposed technique and the ones
required by octrees and kd-trees are respectively given as
a percentage. Finally, the average CPU time in millisec-
onds is provided. On the other hand, Table 2 presents the
results when scenes containing several clusters of objects
are considered. As mentioned above, four clusters with
different amounts of randomly distributed objects are pre-
sented.

In almost all cases, the number of iterations required
to find the nearest sphere to a segment is smaller with
the proposed technique than with octrees and kd-trees.
Improvements with respect to octrees range from two to
eleven times when structured scenes are processed. Al-
ternatively, when scenes containing randomly distributed
objects are considered, improvements range from four
to six times. Regarding kd-trees, the proposed technique
behaves slightly better when a scene with randomly dis-
tributed objects is considered. However, when structured
scenes were considered, the proposed technique requires
up to 4.8 times fewer iterations than kd-trees. This can be

Table 1. Average number of iterations and CPU time in milliseconds necessary to determine the nearest sphere to 500 different random
segments, by considering space-oriented hierarchies (octree and kd-tree) and a hierarchical representation computed with the proposed
technique. The scenes are defined by randomly distributed spheres, Fig. 11a. In the kd-tree and octree rows, the increase percentage of
their average number of iterations with respect to the proposed technique is given

Scene’s spheres 50 100 150 200 250 300 350 400 450 500

Prop. Avg. Iterat. 28 47 49 57 69 83 83 88 94 101
tech. Avg. CPU time 0.023 0.035 0.038 0.04 0.045 0.055 0.055 0.06 0.065 0.068

Avg. Iterat. 31 43 54 64 71 84 91 102 107 112
Kd-tree Difference (%) +10.7 −9.3 +10.2 +12.2 +2.8 +1.2 +9.6 +15.9 +13.8 +10.8

Avg. CPU time 0.025 0.032 0.04 0.047 0.05 0.058 0.065 0.07 0.075 0.078
Avg. Iterat. 196 258 319 354 388 428 448 468 483 494

Octree Difference (%) +600 +448 +551 +521 +462 +415 +439 +431 +413 +389
Avg. CPU time 0.138 0.117 0.215 0.235 0.262 0.29 0.303 0.315 0.303 0.333

Table 2. Average number of iterations and CPU time in milliseconds for structured scenes: four clusters of spheres as illustrated
in Fig. 11b. The spheres contained in every cluster are randomly distributed. In the kd-tree and octree rows, the increase percentage of
their average number of iterations with respect to the proposed technique is given

Scene’s spheres 50 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

Prop. Avg. Iterat. 25 53 75 73 98 120 159 110 92 91 95 110 98
tech. Avg. CPU time 0.013 0.018 0.03 0.03 0.038 0.045 0.06 0.047 0.047 0.04 0.188 0.052 0.05

Avg. Iterat. 22 64 96 131 201 345 295 359 359 431 490 571 573
Kd-tree Difference(%) −13 +20.7 +28 +79.4 +105 +187 +85.5 +226 +290 +373 +415 +419 +484

Avg. CPU time 0.01 0.03 0.038 0.055 0.075 0.09 0.112 0.132 0.142 0.17 0.192 0.22 0.225
Avg. Iterat. 143 145 260 385 340 251 351 249 523 1087 1191 554 596

Octree Difference (%) +472 +173 +246 +427 +247 +109 +120 +126 +468 +1094 +1153 +403 +508
Avg. CPU time 0.087 0.13 0.775 1.09 1.45 1.758 2.115 2.415 2.685 3.087 3.48 3.453 3.803

easily explained since kd-trees do not take explicitly into
account the spatial distribution of the objects contained
in the scene, since kd-tree’s partitioning planes are deter-
mined according to the mean of the spheres’ coordinate
corresponding to the current iteration. This drawback of
kd-trees can also be appreciated when kd-trees are com-
pared to octrees (for instance scenes containing 1250 and
1750 objects).

Finally, regarding the time to generate the hierarchical
structures, octrees and kd-trees are generated considerably
faster than the proposed technique as expected. This is
due to the fact that both octrees and kd-trees do not take
into account the spatial relationship among the objects in
the scene as their purpose is to simply partition the input
space and not to generate a hierarchical grouping that pre-
serves the topological structure of the objects contained in
the scene at different abstraction levels. Thus, in the worst
case of a scene defined by 3000 spheres, Fig. 11b, the pro-
posed technique generated the hierarchy in 659 s, while
the corresponding kd-tree was generated in 19.84 s and the
octree in 1.16 s. This implies that the proposed technique
is advantageous over kd-trees and octrees when the hier-
archy is generated once and utilized many times, which
is the typical situation in practical applications, and also
when the time to query the hierarchy must be kept as low
as possible, for example, in real time applications. In the

Generating compact representations of static scenes by means of 3D object hierarchies 153

latter case, the hierarchy can be built off-line. Therefore,
the construction time in this situation would be unimpor-
tant.

5 Conclusions and further improvements

A new technique for generating a hierarchical represen-
tation of the objects contained in a 3D scene has been
presented. It is assumed that these objects are represented
by single bounding spheres or, alternatively, in case that
such spheres are not tight enough to the objects, by sets
of spheres as suggested in [13, 17]. The proposed tech-
nique consists of three stages. The first stage computes
the cost of grouping all pairs of input spheres and gener-
ates an adjacency graph with those costs. In the second
stage, the minimum spanning tree (MST) of that graph
is generated. In the last stage, a merging criterion is used
to select the set of spheres to be merged at that level.
These stages are applied until a level with a single sphere
is reached.

The proposed technique has shown better performance
than space-oriented approaches (i.e., octree and kd-tree-
based representations) for both randomly distributed ob-
jects and structured scenes. For example, checking inter-
sections in hierarchies generated with the proposed tech-
nique requires up to 4.8 times fewer iterations than when
they are generated with kd-trees. This reduction rises to

eleven times for hierarchies generated by applying octree-
based representations.

The proposed technique is more advantageous than [21]
since: (1) efficiency is higher as the costs between the
objects of the scene do not have to be computed after
every new object generation but after every new level
generation; (2) a more realistic filling factor considering
volumes instead of the difference between diameters is
used; (3) there are not user-tuned parameters; and (4) the
generated tree is n-ary instead of binary and, thus, it is
shallower. Finally, the proposed approach improves [7]
by defining a new strategy for generating the hierarchy
and by using a new cost function. This cost function
uses a volume-based filling factor that helps to build bal-
anced hierarchies; filling information is used for clustering
objects at a given hierarchy. At the same time this informa-
tion is preserved in order to be used in further levels.

Spheres are the most common bounding volume due
to the simplicity both to represent them and to detect
intersections among them. However, other bounding vol-
umes have also been proposed in the literature, such as
k-dops [9] and ellipsoids [18]. Further work will consist
of extending the proposed technique to these alternative
geometric primitives, which, at least, will require the
definition of new cost functions. In addition, practical ap-
plications of the proposed 3D hierarchical representations
as a means to speed-up path planning or collision avoid-
ance algorithms will be developed.

References
1. de Berg, M., van Kreveld, M., Over-

mars, M., Schwarzkopf, O.: Computational
Geometry: Algorithms and Applications.
Springer, Berlin, Heidelberg, New York
(2000)

2. Breen, D., Mauch, S., Whitaker, T.: 3D
scan conversion of csg models into distance
volumes. In: Proceedings of IEEE
International Symposium on Volume
Visualization, North Carolina, USA,
pp. 7–14 (1998)

3. Brunet, P., Navazo, I.: Solid representation
and operation using extended octrees. ACM
Trans. Graph. 9(2), 170–197 (1990)

4. Fernández, J., González, J.: Hierarchical
graph search for mobile robot path
planning. In: Proceedings of IEEE
International Conference on Robotics and
Automation, Leuven, Belgium, pp. 656–661
(1998)

5. Fernández, J., González, J.:
Multihierarchical graph search. IEEE Trans.
Pattern Anal. Mach. Intell. 24(1), 103–113
(2002)

6. Fischer, K., Gärtner, B., Kutz, M.: Fast
smallest-enclosing-ball computation in high
dimensions. In: Proceedings of Annual
European Symposium on Algorithms No.
11, Budapest, Hungary. LNCS vol. 2832,
pp. 630–641 (2003)

7. Garcia, M., Sappa, A., Basañez, L.:
Efficient generation of object hierarchies
from 3d scenes. In: Proceedings of IEEE
International Conference on Robotics and
Automation, Detroit, Michigan, USA,
pp. 1359–1364 (1999)

8. Goldsmith, J., Salmon, J.: Automatic
creation of object hierarchies for ray
tracing. IEEE Comput. Graph. Appl. 7,
14–20 (1987)

9. Gottschalk, S., Lin, M., Manocha, D.:
Obb-tree: A hierarchical structure for rapid
interface detection. In: Proceedings of
SIGGRAPH 96, New Orleans, LA,
pp. 171–180 (1996)

10. Havran, V., Bittner, J.: On improving
kd-trees for ray shooting. J. WSCG 10(1),
209–217 (2002)

11. Huerta, J., Chover, M., Quiros, R., Vivo, R.,
Ribelles, J.: Binary space partitioning trees:
a multiresolution approach. In: Proceedings
of IEEE International Conference on
Information Visualization, London, UK,
pp. 148–154 (1997)

12. Klosowski, J., Held, M., Mitchell, J.,
Sowizral, H., Zikan, K.: Efficient
collision detection using bounding
volume hierarchies of k-dops. IEEE
Trans. Visual. Comput. Graph. 4(1), 21–36
(1998)

13. Martínez-Salvador, B., del Pobil, A.,
Pérez-Francisco, M.: Very fast collision
detection for practical motion planning
Part i: The spatial representation. In:
Proceedings of IEEE International
Conference on Robotics and Automation,
Leuven, Belgium, pp. 624–629 (1998)

14. Ruiz de Miras, J., Feito, F.: Direct and
robust voxelization and polygonization of
free-form csg solids. In: Proceedings of
IEEE International Symposium on 3D Data
Processing Visualization and Transmission,
Padova, Italy, pp. 352–355 (2002)

15. O’Sullivan, C., Dingliana, J.: Real time
collision detection and response using
sphere trees. In: Proceedings of 15th Spring
Conference in Computer Graphics,
Bratislava, Slovakia, pp. 83–92 (1999)

16. Payeur, P., Laurendeau, D., Gosselin, C.:
Range data merging for probabilistic octree
modeling of 3D workspaces. In:
Proceedings of IEEE International
Conference on Robotics and Automation,
Leuven, Belgium, pp. 3071–3078 (1998)

17. del Pobil, A., Serna, M., Llovet, J.: A new
representation for collision avoidance and
detection. In: Proceedings of IEEE
International Conference on Robotics and
Automation, Nice, France, pp. 246–251
(1992)

154 A.D. Sappa, M.A. Garcia

18. Rimon, E., Boyd, S.: Obstacle collision
detection using best ellipsoid fit. Intell.
Robot. Syst. 18(2), 105–126
(1997)

19. Rosen, K.: Discrete Mathematics and its
Applications, 2nd edn. McGraw-Hill, New
York (1990)

20. Subramanian, K., Fussell, D.: Automatic
termination criteria for ray tracing
hierarchies. In: Proceedings of Graphics
Interface, Calgary, Alberta, Canada,
pp. 93–100 (1991)

21. Xavier, P.: A generic algorithm for
constructing hierarchical representations

of geometric objects. In: Proceedings of
IEEE International Conference on Robotics
and Automation, Minnesota, USA,
pp. 3644–3651 (1996)

ANGEL DOMINGO SAPPA received his degree
in Electro-mechanical Engineering in 1995
from the National University of La Pampa,
General Pico-La Pampa, Argentina, and doc-
torate degree in Industrial Engineering in 1999
from the Polytechnic University of Catalonia,
Barcelona, Spain. From 1999 to 2002 he un-
dertook a post-doctorate research position at
LAAS-CNRS, Toulouse, France and at Z+F UK
Ltd., Manchester, UK. From September 2002 to
August 2003 he was with the Informatics and
Telematics Institute, Thessaloniki, Greece, as
a Marie Curie Research Fellow. Since September
2003 he has been with the Computer Vision
Center, Barcelona, Spain, as a Ramón y Cajal
Research Fellow. His research interests are
focused on range image analysis, 3D modeling
and model-based segmentation.

MIGUEL ANGEL GARCIA received his B.S.,
M.S., and Ph.D. degrees in Computer Science
from the Polytechnic University of Catalonia,
Barcelona, Spain, in 1989, 1991, and 1996,
respectively. He joined the Department of Soft-
ware at Polytechnic University of Catalonia
in 1996 as an Assistant Professor. In 1997, he
joined the Department of Computer Science
and Mathematics, Rovira i Virgili University,
Tarragona, Spain as an Associate Professor, be-
ing Head of Intelligent Robotics and Computer
Vision Group. In 2006, he joined the Depart-
ment of Informatics Engineering at Autonomous
University of Madrid, where he is currently As-
sociate Professor. His research interests include
image processing, 3D modeling, and mobile
robotics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

