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Abstract: This paper evaluates different wavelet-based cross-spectral image fusion strategies
adopted to merge visible and infrared images. The objective is to find the best setup independently
of the evaluation metric used to measure the performance. Quantitative performance results are
obtained with state of the art approaches together with adaptations proposed in the current work.
The options evaluated in the current work result from the combination of different setups in the
wavelet image decomposition stage together with different fusion strategies for the final merging
stage that generates the resulting representation. Most of the approaches evaluate results according
to the application for which they are intended for. Sometimes a human observer is selected to judge
the quality of the obtained results. In the current work, quantitative values are considered in order
to find correlations between setups and performance of obtained results; these correlations can be
used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images.
The whole procedure is evaluated with a large set of correctly registered visible and infrared image
pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR).

Keywords: image fusion; fusion evaluation metrics; visible and infrared imaging;
discrete wavelet transform

1. Introduction

Image fusion is the process of combining information from two or more images of a given
scene into a single representation. This process is intended for encoding information from source
images into a single and more informative one, which could be suitable for further processing or
visual perception. There are two different cases where image fusion takes place: firstly, the case of
images obtained from different sensors (multisensory), which could also work at different spectral
band (multispectral) (e.g., [1,2]). Secondly, the case of images of the same scene but acquired at
different times (multitemporal) (e.g., [3,4]). The current work is focussed on the first case, more
specifically, fusing pair of images from the visible and infrared spectra obtained at the same time
by different sensors. The evaluations are performed using pairs of images from both visible and near
infrared (NIR) and visible and long wave infrared (LWIR) spectra. It is assumed that the images to be
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fused are correctly registered; otherwise, a process of cross-spectral feature detection and description
should be followed in order to find the correspondences between the images (e.g., [5–7]).

The usage of cross-spectral imaging has been increasing due to the drop in price of cameras
working at different spectral bands. That increase is motivated by the possibility of developing robust
solutions that cannot be obtained with single spectral band sensors. These robust solutions can be
found in domains such as: driving assistance (e.g., [8]), video surveillance (e.g., [9,10]), face detection
(e.g., [11]), thermal inspection (e.g., [12,13]), just to mention a few. The information provided by the
cameras working at different spectral bands needs to be fused in order to have a single and compact
representation for further processing. For instance, the classical monocular visual odometry problem
faced in driving assistance can be robustly tackled by using the result from the fusion of visible an
infrared spectrum pair of images. The usage of fused images allows to compute visual odometry
even in poor-lighting scenarios, which is an advantage in front of classical approaches that are based
on a singe spectral band (e.g., [8,14]). The simultaneous use of images from different spectra can be
helpful to improve the performance in the fields mentioned above—video surveillance, face detection
and thermal inspection.

During the last decades the image fusion problem has been largely studied, mainly for remote
sensing applications (e.g., [2,15,16]). Most of these methods have been proposed to produce a
high-resolution multispectral representation from a low-resolution multispectral image fused with
a high-resolution panchromatic one. The difference in image resolution is generally tackled by means
of multi-scale image decomposition schemes that preserve spectral characteristics but represented
at a high spatial resolution. Among the different proposals, wavelet-based approaches have
shown one of the best performance by producing better results than standard methods such as
the intensity-hue-saturation (IHS) transform technique or principal component analysis (PCA) [17].
Wavelet-based image fusion consists of two stages. Firstly, the given images are decomposed into
two components (more details are given in Section 2); secondly, the components from the given
images are fused in order to generate the final representation. Hence, the main challenge with
wavelet-based fusion schemes lies on finding the best setup for both, the image decomposition
approach (i.e., number of levels, wavelet family and its configurations) and the fusion strategy to
merge the information from decomposed images into a single representation (e.g., min, max, mean,
rand, etc., from the two approximations and details obtained from the given images at elementwise by
taking respectively the minimum, the maximum, the mean value, or a random element). The selection
of the right setup for fusing the given images will depend on the way the performance is evaluated.
Hence, a special care should be paid to the quantitative metric used to evaluate the obtained result,
avoiding psychophysical experiments that will result in qualitative values [18].

Different approaches have been proposed in the literature to evaluate fusion results; they can
be classified into two categories depending on the existence or not of a reference image [19]. In the
case a reference image is available, it can be used as a ground truth to evaluate results by means
of quality metrics such as: Root Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR),
Structural Similarity Index Measure (SSIM), Mutual Information (MI) among others (e.g., [20,21]).
Otherwise, when there is no reference image, the quality of the results is indirectly measured through
some metrics such as: Entropy (a high entropy value indicates the fused image as rich in information
content), Standard Deviation (high values indicate high contrast) and Mutual Information (the larger
the value the better quality fused images) (e.g., [22,23]).

This paper addresses the problem of finding the best setup by means of an empirical approach
where a large number of configurations (setups) are quantitatively evaluated. The goal is to gain
experience that may contribute to support informed decisions of which should be the best setup
given a description of the problem. The different configurations are evaluated by means of the usage
of four different metrics. Since reference images are not available, quality metrics are adaptations
of the ones mentioned above. More specifically: Fused Peak Signal to Noise Ratio (FPSNR), Fused
Mutual Information (FMI), Fused Structural Similarity (FSS) and Fused S-CIELAB (FS-CIELAB). Their
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definitions are presented in Section 3. Essentially, they try to measure how much of the information
contained in the given images is also present in the fused one; ideally the fused image should contain
all the information from both images. It should be highlighted, as mentioned above, that the current
work is focussed on the usage of visible and infrared spectrum (including both NIR and LWIR)
images. The usage of these two spectral bands is motivated by the hardware that is already present in
different platforms (there are: vehicles with visible and LWIR cameras; videosurveillance platforms
that integrate both kind of cameras and thermal inspection devices that capture both visible and
thermal information).

The remainder of the paper is organized as follows. Section 2 briefly presents the wavelet-based
image fusion framework together with a description of the different configurations evaluated in this
study. Section 3 introduces the metrics used to evaluate results; evaluations with pairs of both visible
and NIR images and visible and LWIR images are presented in Section 4. Finally, conclusions are
given in Section 5.

2. Wavelet-Based Image Fusion

Wavelet theory has been largely studied in digital signal processing and applied to several
subjects (from noise reduction [24] to texture classification [25], just to mention a couple). At this
section, the basic concepts and elements of Discrete Wavelet Transform (DWT) in the context of image
fusion are introduced. Let IVS and IIR be the original images, of m× n pixels, in the visible (VS) and
infrared (IR) spectra respectively (IR refers to both NIR and LWIR images). Let IF be the image, also
of m× n pixels, resulting from their fusion. In the wavelet-based image fusion, the given images are
decomposed at their corresponding approximation (A) and detail (D) components, which correspond
to the lowpass and highpass filtering for each decomposition level. These decompositions can be
represented through sub-images. The detail representations correspond to the vertical details (VD),
horizontal details (HD) and diagonal details (DD) respectively. Figure 1 (Right) depicts illustrations
of one level DWT decompositions obtained from the original images Figure 1 (Left) (different
approaches used to decompose the given images are introduced in Section 2.1).

IVS DWTVS

IIR DWTIR

Figure 1. (Left) Pair of images (VS-IR) to be fused; (Right) DWT decompositions (one level) of the
input images.

Once the coefficients (approximations and details) from each decomposition level are obtained a
fusion scheme is applied to catch the most representative information from each representation. The
most widely used fusion schemes proposed in the literature to merge the information are reviewed
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in Section 2.2. Finally, the inverse DWT is applied to the result in order to obtain the sought fused
image (IF). Figure 2 presents a classical DWT based image fusion pipeline.

Figure 2. Illustration of DWT based fusion scheme.

2.1. Discrete Wavelet Transform (DWT)

At this section basic concepts of discrete wavelet transform are introduced. The DWT can be
represented as a bank of filters, where at each level of decomposition the given signal is split up
into high frequency and low frequency components. The low frequency components can be further
decomposed until the desired resolution is reached. If multiple levels of decomposition are applied,
it is referred to as multiresolution decomposition. Although there is no rule, in general, in the image
fusion problem just one level of decomposition is considered. In the current work, the optimum
number for the level of decomposition is found by evaluating different configurations.

In discrete wavelet transform theory several wavelet families have been proposed in the
literature. Each family has a wavelet function and a scaling function. These two functions act as
a high pass filter (the wavelet function) and a low pass filter (the scaling function). A wavelet family
is normally represented by only its wavelet function. Both of these functions must satisfy some
conditions to ensure that the transform can be done. More details about the conditions that must
be satisfied can be found in [26]. Within each of these families we have some subclasses that depend
on the number of vanishing moments in the wavelet function. This is just a mathematical property
that we can directly relate to the number of coefficients. Each of these wavelet functions and their
subclasses represent a different way of decomposing a signal; several of these wavelet functions have
been considered in the current cross-spectral image fusion evaluation study.

In addition to the wavelet function family, there also exist different variations to the way the
approximation and detail coefficients are obtained. These variations are related with the sampling of
the signal after the transformation is applied. This result in a larger number of setups to be considered
in the current evaluation study. The possible variations are as follows:

Decimated: In this case the approximation and details images are downsampled after each level
of decomposition (in case of multi level decomposition), keeping one out of every two rows and
columns. As previously mentioned, the wavelet and scaling functions can be viewed as high and
low pass filters, respectively. Because these filters are one dimensional, when dealing with 2D images
the process consists of applying these two filters first to the rows and then to the columns. Figure 3
presents an illustration of this concatenation of high (h) and low (l) pass filters applied to the rows
and columns of a given image in order to obtain the approximation (A) and details (HD, VD, DD).

This produces the approximation image (low pass filtering to both the rows and columns) and
the detail images shown in Figure 1 (right) at half the size of the original input image. When applying
the inverse transform, which needs to be done after the fusion stage (see Figure 2), the approximation
and details images are first upsampled and then the inverse filter is applied.

The main problem of using decimation in image fusion is that it tends to introduce artifacts when
the images to be fused are not correctly registered; the same problem happens for features that do not
have horizontal or vertical orientation.
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Figure 3. Two dimensional wavelet decomposition scheme (l: low pass filter; h: high pass filter;
dec: decimation).

Undecimated: In this case instead of downsampling the resulting approximation and detail
images, the filters are upsampled. This produces approximation and details images of the same size
as the original ones but with half the resolution. In this case, when doing the inverse transform, the
filters are downsampled.

This way of applying low and high pass filters solves the problems derived from the shifts in
the original images, which were originally caused by the down sampling of the approximation and
details, but problems from the features without horizontal or vertical orientation still remain.

Non separated: The issue with the horizontal and vertical orientated features is due to the fact
that rows and columns are separately filtered. A solution to this problem is to use a two dimensional
wavelet filter derived from the scaling function. This will result in an approximation image obtained
from the filtering and one detail image that can be obtained from the difference of the original image
with the approximation image. The results are similar to the one obtained with the undecimated
approach, in the sense that the resolutions will decrease with each level of decomposition because the
filter is upsampled.

Since this approach does not imply a down sampling, there is no issue with the shifts between
the original images; additionally, since 2D filters are applied, instead of applying 1D filters to the rows
and columns respectively, the orientation problem is reduced [27].

2.2. Fusion Strategies

Once the given images are split up into the corresponding approximation images and details
images (i.e., horizontal details, vertical details and diagonal details) the fused image (IF) is obtained
by using a merging scheme that takes into account the approximation and detail information from
both images—a correct registration is assumed. Some of the most used merging schemes (e.g., [26,28])
are summarized below:

Substitutive wavelet fusion: in this scheme the information from one image is completely
replaced with information from the other image. In other words, the approximation from one image
is merged with the detail of the other image. In the current work the two possible configurations have
been considered: (AVS, DIR) and (AIR, DVS). Once the information is merged the inverse transform
is computed to obtain IF.

Additive wavelet fusion: as indicated by the name, at this scheme the approximations from
one image are added to the other one. The same happens for the detail information. If multiple
decompositions were applied, the details at each resolution level are added. Finally, after merging the
information the inverse transform is performed resulting in the sough IF. In our implementation this
scheme is implemented by considering the mean value, instead of just the result from the addition.

Weighted models: at this scheme a user tuned merging strategy is applied. Depending on the
application and the kind of input images approximations and details are combined according to some
statistic values (µ, σ) or according to some other relevant criteria. At the current work, since input
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images are of the same resolution, and we intend to evaluate the performance of fusion based on
DWT of infrared and visible images in a general way, this scheme is not considered.

Other schemes have been proposed in the literature, which somehow can be considered as
combinations of the ones presented above; for instance in this work a strategy that considers the
minimum value from each image (approximation or detail images), the maximum value or a random
selection was also considered.

3. Evaluation Metrics

Quantitative evaluation of the quality of fused images has been an active research topic in
recent years (e.g., [19,21]). As mentioned above, proposed approaches can be classified into two
categories, depending whether a reference image is given or not. In the current work, there is no
reference image. Nonetheless, we propose to adapt quality metrics generally used when reference
images are provided, instead of using indirect metrics such as entropy or standard deviation based
approaches [19]. The proposed adaptations and their descriptions are as follows.

Fused Peak Signal to Noise Ratio (FPSNR): is based on the widely used metric (PSNR), which
is computed from the ratio between the number of gray levels (L) in the image and the mean squared
error between the intensity value of the fused image and the reference one. In our case, since there
is no reference image, this value is computed twice, once with the visible image and once with the
infrared image used as input information. Then, the average value is considered:

FPSNRF
VS−IR = (PSNRF,VS + PSNRF,IR) /2 (1)

where PSNRF,k = 20log10

(
L2/ 1

mn ∑m
i=1 ∑n

j=1 (Ik(i, j)− IF(i, j))2
)

, k = {VS, IR}.
Fused Mutual Information (FMI): has been proposed in [29] and later on improved in [22],

where a faster approach is proposed—the acronym FMI in the original paper refers to Feature Mutual
Information, but here we propose to update it to our notation. This metric evaluates the performance
of the fusion algorithm by measuring the amount of information carried from the source images to the
fused image by means of mutual information (MI). MI measures the degree of dependency between
two variables A and B, by measuring the distance between the joint distribution pAB(a, b) and the
distribution associated with the case of complete independence pAa · pBb, by means of the relative
entropy (see [29] for more details):

FMIF
VS−IR = (MIF,VS/(HF + HVS) + MIF,IR/(HF + HIR)) /2 (2)

where Hk, with k = {VS, IR, F}, are the histogram based entropies of the visible, infrared and fused
images respectively as presented in [29].

Fused Structural Similarity (FSS): is based on the work presented in [30]; the structural similarity

between I1 and I2 is defined as SSI1,I2 = SSIM(I1, I2), where SSIM(I1, I2) =
1
N ∑N

j=1 SSIM(aj, bj) is
the Structural SIMilarity (SSIM) index proposed in [21]. Hence, the FSS is computed as:

FSSF
VS−IR = (SSF,VS + SSF,IR) /2 (3)

Fused S-CIELAB (FS-CIELAB): is based on the spatial cielab (S-CIELAB) approach presented
in [31]. Although this approach has been originally proposed for measuring color reproduction errors
in digital images, it has been also used for measuring fusion results in color images [32]. It is
computed as:

FS-CIELABF
VS−IR = (S-CIELABF,VS + S-CIELABF,IR) /2 (4)

For details about S-CIELAB evaluation metric see [31].
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All the previous approaches are direct adaptations where just the average between the resulting
quantitative evaluations between each source image and the resulting fused one is computed. More
elaborated metrics, computed at a pixel-wise level, could be computed and maybe would result in a
more representative value of the algorithm’s performance. Such study is out of the scope of current
work and is considered future work.

4. Experimental Results

The proposed comparative study has been carried out using the public data set presented
in [33], which consists of 477 pair of cross-spectral images (NIR and visible spectra) distributed
into 9 categories: Country(52), Field(51), Forest(53), Mountain(55), Old Building(51), Street(50),
Urban(58), Water(51)—for more details about the data set see [33]. Additionally, pairs of cross-spectral
images (LWIR and visible spectra) from [8], have been considered to evaluate the obtained results.
As presented in Section 2 different setups have been tested, both in the DWT decomposition stage
as well as in the fusion strategy (see Figure 2). Table 1 presents the variables evaluated in the
current study; this includes: wavelet family, decomposition level and fusion scheme (for both
approximation and details). The different values for these variables define the setups used for
both the DWT decomposition and the Inverse DWT; in all the cases the decimated option has been
considered. A more detailed description about the evaluated Wavelet families is provided in Table 2.
Regarding the fusion strategy, four different options have been considered: mean (mean value
between approximation coefficients and mean value between detail coefficients); max (the coefficients
with maximum value is selected, in both cases approximation and details); min (the coefficients with
minimum values are selected); rand (coefficients of approximation and details are randomly selected).
Trying all the different combinations it results in a family of 2592 possibilities, which were tested
using just a pair of images from [33]. The obtained results were later on validated with a larger set
of images (we randomly select 2 pairs of images per category from [33] and the comparative study is
repeated just with the best 3% of configurations, but not with all the 2592 possibilities). Finally, pairs
of cross-spectral images from [8] have been also considered to evaluate the obtained results.

Table 1. Setups evaluated in the current work.

Variable Comments Values

Family of wavelet used Haar, Daubechies, Symlets,

Wavelet family for both DWT and I-DWT Coiflets, Biorthogonal,
Reverse Biorthogonal
Discrete Meyer Aprox.

Level Level of decomposition 1, 2 and 3

Fusion strategy (approx.) Strategy used to merge coefficients from both images mean, max, min, rand
Fusion strategy (details) Strategy used to merge coefficients from both images mean, max, min, rand

The VS and IR images are fused by applying the fusion scheme three times, one per each (RGB)
channel of the visible image. In other words, the DWT based fusion is applied to the following pairs:
(IVSR , IIR), (IVSG , IIR) and (IVSB , IIR). In this way the resulting fused image (IF) can be represented
in the (RGB) color space. The evaluation consisted of fusing a pair of images (the ones presented in
Figure 1) using all the possible setups. This results in 2592 images (IFi , where i is the index associated
with a given setup). These images are then evaluated using the four evaluation metrics presented
in Section 3. Results are sorted and plotted in Figure 4. Vertical lines represent the position that
includes the setups corresponding to the best 3% at each evaluation metric. This 3% of configurations
correspond to the top first 3% when the given evaluation metric is considered; however, when the
performance of these setups is evaluated according to other metrics it is not in the top best 3% but
it spans covering a larger set of configurations in the sorted list. The (3%) value has been selected
just as a reference to study the behavior of best setups; in other words, to analyze how sensitive are
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the best setups to the used metrics. Just as illustrations Figures 5 and 6 depict the best and worst
results according with each of the four evaluation metrics presented in Section 3. These best and
worst results correspond to the first and last configurations presented in the four plots in Figure 4.

Table 2. Wavelet families evaluated in the current work.

Wavelet Name Comments Setups

Haar (haar) Orthogonal Wavelet with linear phase. haar

Daubechies (dbN) Daubechies’ external phase wavelets. db1, db2, ..., db8.N refers to the number of vanishing moments.

Symlets (symN) Daubechies’ least asymmetric wavelets. sym2, sym3, ..., sym8.N refers to the number of vanishing moments.

Coiflets (coifN) In this family, N is the number of vanishing coif1, coif2, ..., coif5.moments for both the wavelet and scaling function.

Biorthogonal

Biorthogonal wavelets with linear phase. Feature bior1.1, bior1.3, bior1.5,

(biorNr.Nd)

pair of scaling functions (with associated wavelet bior2.2, bior2.4, bior2.6,
filters), one for decompositions and one for bior2.8, bior3.1, bior3.3,
reconstruction, which can have different number bior3.5, bior3.7, bior3.9,
of vanishing moments. Nr and Nd represent the bior4.4, bior5.5, bior6.8
number of vanishing moments respectively.

Reverse Reverse of the Biorthogonal wavelet

rbio1.1, rbio1.3, rbio1.5,

Biorthogonal explained above.

rbio2.2, rbio2.4, rbio2.6,

(rbioNr.Nd)
rbio2.8, rbio3.1, rbio3.3,
rbio3.5, rbio3.7, rbio3.9,
rbio4.4, rbio5.5, rbio6.8

Discrete Meyer Approximation of Meyer wavelets leading to dmeyApproximation FIR filters that can be used in DWT.(dmey)

Figure 4. Cont.
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Figure 4. Results sorted according to the metric used for the evaluation (note FS-CIELAB is a
dissimilarity measure, meaning that the smaller the score the better the metric quality).

Best FPSNR Best FMI

Figure 5. Cont.
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Best FSS Best FS-CIELAB

Figure 5. Best DWT fusion results according with the evaluated metrics.

Worst FPSNR Worst FMI

Worst FSS Worst FS-CIELAB

Figure 6. Worst DWT fusion results according with the evaluated metrics.

Looking at the resulting plots we try to identify the evaluation metric that should be used to
select the best setups (i.e., configurations). Hypothetically, the best configurations at a given metric
should be also among the best ones when they are considered under a different evaluation metric.
Although this is not exactly the case if we look at Figure 4, we can appreciate that in the last three
plots, the ones corresponding to FMI, FSS and FS-CIELAB metrics, there is not a big change in
performance when different top best 3% configurations are considered. This behavior does not hold
when the FPSNR metric is considered. In this case we can appreciate that there is a larger decrease
in performance when the top best configurations from FSS and FS-CIELAB metrics are considered.
Table 3 presents the percentages of decrease when the different metrics are considered. In summary,
we can conclude that selecting the configurations, based on FPSNR or FMI metrics, represent a good
choice since these configurations return good results even when other metrics are considered.

Table 3. Performance decrease (percentage) with respect to the best one according to the four
evaluation metrics (see Figure 4).

3% Best FPSNR 3% Best FMI 3% Best FSS 3% Best FS-CIELAB

FPSNR 0.26% 1.17% 16.79% 16.97%
FMI 2.96% 1.05% 2.24% 3.24%
FSS 6.39% 6.46% 0.04% 0.17%
FS-CIELAB 2.37% 1.52% 0.008% 0.006%
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In order to validate the obtained results, a new set of images corresponding to other categories
from [33], has been evaluated—2 pairs (VS and NIR) of images per category are randomly selected
(some of them are depicted in Figure 7). In this case, the top best setups (configurations) from the
FPSNR evaluation metric have been considered since they are the most stable when considered under
other evaluation metrics. Results obtained from this new data set have similar behavior than the ones
obtained in the pair of test image (see Figure 1); actually, the values have the same order of magnitude.
The only exception comes when measuring FS-CIELAB with pair of images from severely different
environments than the pair of image used in the study (the test image). The test images were selected
from the country folder, and these exceptions come when measuring FS-CIELAB from environments
such as old building, street and urban categories. This leads us to the conclusion that FS-CIELAB
behaves differently according to the nature of the environment. This conclusion needs to be studied
and validated in a further research. In summary, our selected best configurations behave good enough
when other set of images are considered; hence, we can conclude they are the best options for fusing
cross-spectral images independently of the environment and nature of the images.

Figure 7. Four pairs of images from the subset used for validation: (Top) Visible spectrum images;
(Bottom) NIR images.

Looking at the setups with best results we can observe that: (1) using one level of decomposition
is enough for the fusion of images; even though in some cases another level may perform similarly or
slightly better, the very small difference in the measurement value does not justify the usage of further
decomposition levels; (2) the reverse biorthogonal wavelet family is the one that appears more times
in the set of best configurations, independently of the metric selected for the evaluation. From the
reverse biorthogonal family, the rbio5.5 was the best one. Surprisingly, when counting the number of
times each family appears in the worst configurations (we did a similar study but with the worst 3%
of configurations), the reverse biorthogonal appears in a greater number as well. This behavior can
be easily understood in combination with the next point (selection of fusion strategy); (3) regarding
the fusion strategy the approximation weights much more than the details, as expected, and the
selection of approximation strategy varies according to metric selected for evaluating the results. For
FS-CIELAB and FSS the mean between both approximation images (NIR and RGB) was always the
best selection; for FPSNR it was distributed almost evenly between the minimum and maximum
between both approximation images; in other words, independently of the selection (min or max)
a good result is obtained. Finally, for FMI, the minimum was always the best choice. The worst
configurations, correspond to the random selection of coefficients for approximation, and this leads
to the conclusion that this is what really makes the configurations measure poorly with the metric.
In such a case (coefficients randomly selected), the performance is always bad for any metric,
independently of the selected wavelet family. In summary, the reverse biorthogonal wavelet family is
the best option for decomposing the images independently of the metric selected for the evaluation;
regarding the fusion strategy, there is a correlation between the best option and the selected evaluation
metric as indicated above.
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Finally, a new data set containing visible spectra (VS) and Long Wave Infra-Red (LWIR) images
has been considered [8]. This data set contains pair of images from the same scene, taken with the
same platform (a color camera from PointGrey and a thermal camera from FLIR), but at a different
day-time. Figure 8 presents three pairs of cross-spectral images (VS, LWIR) used to evaluate the needs
of having different setups for DWT based image fusion in order to obtain the best performance. These
three pairs of images correspond to sequences obtained at: (Top) early morning; (Middle) midday;
and (Bottom) late evening. The four evaluation metrics presented in Section 3 have been considered
to evaluate the performance of the results obtained from the fusion. The evaluation metrics have a
similar behavior than in the previous case; in other words, values from FSS and FS-CIELAB are not
that much affected by the different configurations—just the top best setups from the previous test
have been considered. On the contrary, the values of FPSNR or FMI metrics have larger variation
when they are used to evaluate the performance of the top best setups from the previous test. Having
this in mind we can conclude that the values of FPSNR or FMI should be taken into account when
looking for the best configurations. Table 4 presents the best setups for the three scenarios presented
in Figure 8 according to FPSNR and FMI metrics. These values somehow proof the need of having
a different setup according to the characteristics of the images to be fused (in this case day-time)
in order to get the best performance. The difference between these best configurations and those
obtained with the first data set are mainly due to the nature of the pair of images; the first data set
contains VS-NIR pair of images while the second one VS-LWIR pair of images. Such a difference can
be easily appreciated comparing the pair of images presented in Figure 7 with the ones presented in
Figure 8—LWIR images, also referred in the literature as thermal images, do not have high contrast,
they are poor in texture, in comparison with NIR images. It should be mentioned that the objective
of the current work is not to find the setup that reaches the best performance, independently of the
evaluation metric and kind of cross-spectral image pair, but to identify the most important elements
to be considered: (1) one level of decomposition is enough; (2) the approximation weights more
than details; (3) from all the wavelet families the rbio is the best choice, its is always among the best
configurations (note that in the second data set the rbior family is among the top setups, although the
bior5.5 reaches the best performance in the FPSNR evaluation metric).

Figure 8. Cont.
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Figure 8. Three pairs of cross-spectral images of the same scene but at different day-time (images
from [8]): (Left) VS; (Right) LWIR.

Table 4. Best setups according to the evaluation metric for the pair of cross-spectral images presented
in Figure 8.

Day-Time Evaluation Wavelet Level Fusion Strategy Fusion Strategy
Metric Family (approx. coef.) (details coef.)

Figure 8 (Top) FPSNR bior5.5 1 min max
Figure 8 (Middle) FPSNR bior5.5 1 mean mean
Figure 8 (Bottom) FPSNR bior5.5 1 min max

Figure 8 (Top) FMI rbio2.8 1 min mean
Figure 8 (Middle) FMI rbio2.8 1 mean mean
Figure 8 (Bottom) FMI rbio2.8 1 min max

5. Conclusions

This paper presents an empirical study to identify the best setup for discrete wavelet transform
(DWT) based image fusion, particularly in the visible and infrared case. In the study a large set of
configurations using different wavelet families, decomposition levels and fusion strategies have been
compared and quantitatively evaluated. The quality of the fused images has been assessed using
several state of the art metrics as well as adaptations proposed in this paper. The obtained results have
been validated in a large data set consisting of pairs of registered visible and infrared images, both
NIR and LWIR. Future work will be focussed on developing new evaluation metrics which would be
computed at a pixel-wise level, combining information from both input images at the same time.
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