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Abstract The ability to detect and track human heads and
faces in video sequences can be considered as the finest level
of any video surveillance system. In this paper, we introduce
a general framework for evaluating our recent appearance-
based 3D face tracker using dense 3D data. This tracker
combines online appearance models with an image registra-
tion technique and can run in real-time and is drift insensi-
tive. More precisely, accuracy and usability of this developed
tracker are assessed using stereo-based range facial data from
which ground truth 3D motions are computed. This evalua-
tion quantifies the monocular tracker accuracy, and identifies
its working range in 3D space. Additionally, this evaluation
gives some hints on how the tracker can be fully exploited.

1 Introduction

The ability to detect and track human motion in video
sequences is a key requirement in a great number of appli-
cations such as video surveillance, human–computer inter-
action and gesture recognition. The finest level of tracking
focuses on head motions and facial gestures/expressions [10].

Almost all video surveillance systems have addressed the
estimation of body motions in 2D and 3D. The parametric
representation of these captured motions can be used to infer
the kind of the performed action such as walking and running
[17]. However, information about the face and facial gestures
are not exploited. In the context of video surveillance one
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can argue that the facial gestures/expressions once separated
from the body motion (e.g., stabilizing the body motion) can
be complementary and in some cases they can be more infor-
mative than the body motion. The main challenge of the clas-
sical video surveillance systems is the lack of resolution by
which faces are viewed. However, nowadays due the advent
of advanced sensors which may include active sensors or a
network of cameras [6], the use of facial images in video
surveillance systems is becoming feasible.

In our laboratory, we are building a three-level tracker. As
illustrated in Fig. 1, the main procedure will be:

(a) detection and tracking of persons while they are still
some distance away from the camera;

(b) when these persons come closer to the camera, or when
the active camera zooms in on these persons, their body
posture will be evaluated using state-of-the art human
body motion trackers;

(c) if they are even closer and their face can be viewed with
enough resolution, facial gestures and expressions will
be tracked and inferred in order to see whether these
are compatible with the assumptions made from their
motions and postures.

1.1 Paper contribution

In this paper, we focus on the third level which concerns the
tracking of the 3D face pose and some facial actions in mon-
ocular video sequences. More precisely, we will study the
accuracy of a state-of-art monocular tracker. Vision-based
3D face tracking offers an attractive alternative since vision
sensors are not invasive and hence natural motions can be
achieved. However, detecting and tracking faces in video
sequences is a challenging task because faces are non-rigid
and their images have a high degree of variability. A huge
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Fig. 1 The three different types of human motion tracking that a global surveillance system should include

research effort has already been devoted to vision-based head
and facial feature tracking in 2D and 3D (e.g., [7,12,14,
18,20,23]). Tracking the 3D head pose from a monocular
image sequence is a difficult problem. Classical proposed
techniques may be roughly classified into those based on
optical flow and those based on tracking some salient fea-
tures. Recently, researchers proposed deterministic and sta-
tistical appearance-based 3D head tracking methods which
can successfully tackle the image variability and drift prob-
lems [1,7–9,19]. However, the accuracy of most of these
developed approaches have not been quantitatively evaluated
due to the lack of ground-truth data.

Recently, we have developed a fast and robust appear-
ance-based 3D face tracker combining the concepts of online
appearance models (OAMs) and image registration [9]. This
tracker can provide the six degrees of freedom associated
with the head pose as well as some facial actions. The pro-
posed approach does not suffer from drifting and seems to be
robust in the presence of large head motions and facial ani-
mations. In this paper, we summarize the developed approach
and propose a general framework for evaluating the tracker
accuracy based on dense depth data obtained from a stereo
rig. The use of stereo rigs for inferring ground-truth 3D head
motions has a big advantage over non-visual sensors and most
of classical range sensors in the sense that these ones require
a tedious calibration task in order to relate the non-visual
sensor frame to the camera frame. The main innovation of
this paper is the introduction of an evaluation of the appear-
ance-based tracker using stereo-based dense range data. The
tests are carried out on real video sequences provided by a
stereo rig that (1) provides the tracker with the monocular
sequences and (2) also provides dense range data used for
recovering the ground truth 3D head motions.

The evaluation of our proposed appearance-based tracker
has not been more formal than observing that it works quite
well and that the features of the 3D model projects onto
their corresponding 2D features in the image sequence. The
problem with an objective evaluation is that the absolute
truth is not known. This is particularly true for the 3D head
pose/motion which is given by six degrees of freedom. How-
ever, it is less problematic for the facial feature motion since
their estimated motion can be assessed by checking the align-
ment between the projected 3D model (feature points and line

segments) and the actual location of the facial features. In our
case, the facial features are given by the lips and the eyebrows
so evaluating their motion is straightforward. We point out
that their corresponding motions essentially belong to the
frontal plane of the face. Moreover, since these features have
different textures, their independent motion can be accurately
recovered by the appearance-based tracker.

There are other techniques for measuring face motion,
such as motion capture systems based on acoustic track-
ers [21] or magnetic sensors. However, such systems are
expensive and encumbering, and may not succeed to capture
small motion accurately. Since we are using a deformable
3D mesh we can adopt an inexpensive solution that employs
synthetic test sequences with known ground truth similarly
to [2,13]. In [2], a 3D face tracker based on a statistical facial
texture was evaluated. A synthetic video sequence is cre-
ated using a 3D mesh mapping a texture onto it, and then
animating it according to some captured or semi-random
motion. The tracker then tracks the face in the synthetic video
sequence and the discrepancy between the used synthetic
motion (ground-truth) and the estimated motion yields the
accuracy of the tracker.

Although this scheme can give an idea on the tracker accu-
racy, it has several shortcomings. First, one can note the self-
referential nature of the test, since the same 3D mesh is used
in the synthesis phase and in the test phase. Second, synthetic
videos may not look very life-like. Third, since the synthetic
motion should be realistic to some extent, one has to use the
output of another tracker, and if the same tracker is used the
evaluation test becomes self-referential regarding the used
3D motions in the sense that the tracker is tested with motion
parameters that are easy to estimate. Therefore, our idea is
to use stereo-based 3D facial surfaces (from which an accu-
rate rigid 3D head motion can be retrieved), and at the same
time run our appearance based on the associated monocu-
lar sequence. Then, the accuracy is evaluated by comparing
the 3D head motions provided by the developed monocular
3D face tracker and the ground-truth 3D head motions pro-
vided by stereo data. Since the 3D data associated with the
face surface are accurate and since the used registration—the
iterative closest point (ICP) algorithm—is performing a fine
registration, the resulting 3D head motions can be considered
as “ground-truth” data.
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Notice that 3D face models can be obtained using active
sensors such as [4,5,11,22]. The use of stereo rigs for infer-
ring ground-truth 3D head motions has a big advantage over
most of active range sensors in the sense that the latter ones
require a tedious calibration task in order to relate the sensor
frame to the camera frame since one has to express all 3D
motions in a common coordinate system.

The rest of the paper is organized as follows. Section 2
describes the deformable 3D face model that we use to cre-
ate shape-free facial patches from input images. Section 3
describes the problem we are focusing on, and the online
reconstruction of the facial appearance model. In order to
make the paper self-contained, Sect. 4 summarizes the prin-
ciples of our recent appearance-based 3D face tracker, that is,
the recovery of the 3D head pose and facial actions.
Section 5 introduces the proposed accuracy evaluation frame-
work based on 3D facial surfaces and gives quantitative accu-
racy evaluation obtained with real video sequences. Section 6
concludes the paper.

2 Modeling faces

2.1 A deformable 3D model

In our study, we use the 3D face model Candide. This 3D
deformable wireframe model was first developed for the pur-
pose of model-based image coding and computer animation.
The 3D shape of this wireframe model is directly recorded
in coordinate form. It is given by the coordinates of the 3D
vertices Pi , i = 1, . . . , n where n is the number of vertices.
Thus, the shape up to a global scale can be fully described
by the 3n-vector g; the concatenation of the 3D coordinates
of all vertices Pi . The vector g is written as:

g = g + S τs + A τa (1)

where g is the standard shape of the model, τs and τa are
shape and animation control vectors, respectively, and the
columns of S and A are the shape and animation units. A
shape unit provides a way to deform the 3D wireframe such
as to adapt the eye width, the head width, the eye separation
distance, etc. Thus, the term S τs accounts for shape variabil-
ity (inter-person variability) while the term A τa accounts for
the facial animation (intra-person variability). The shape and
animation variabilities can be approximated well enough for
practical purposes by this linear relation. Also, we assume
that the two kinds of variability are independent. With this
model, the ideal neutral face configuration is represented
by τa = 0. We point out that since the evaluation process
is based on the ICP registration technique, the videos used
by the evaluation have to depict face motion without facial
expressions. However, the monocular tracker estimates the
3D head pose parameters and the facial actions.

In this study, we use 12 modes for the facial shape units
matrix S and six modes for the facial animation units ani-
mation units (AUs) matrix A. Without loss of generality, we
have chosen the six following AUs: lower lip depressor, lip
stretcher, lip corner depressor, upper lip raiser, eyebrow low-
erer and outer eyebrow raiser. These AUs are enough to cover
most common facial animations (mouth and eyebrow move-
ments). Moreover, they are essential for conveying emotions.

In Eq. (1), the 3D shape is expressed in a local coordi-
nate system. However, one should relate the 3D coordinates
to the image coordinate system. To this end, we adopt the
weak perspective projection model. We neglect the perspec-
tive effects since the depth variation of the face can be con-
sidered as small compared to its absolute depth. Therefore,
the mapping between the 3D face model and the image is
given by a 2×4 matrix, M, encapsulating both the 3D head
pose and the camera parameters.

Thus, a 3D vertex Pi = (Xi , Yi , Zi )
T ⊂ g will be pro-

jected onto the image point pi = (ui , vi )
T given by:

(ui , vi )
T = M (Xi , Yi , Zi , 1)T (2)

For a given person, τs is constant. Estimating τs can be car-
ried out using either feature-based or featureless approaches.
Thus, the state of the 3D wireframe model is given by the
3D head pose parameters (three rotations and three transla-
tions) and the internal face animation control vector τa. This
is given by the 12-dimensional vector b:

b = [θx , θy, θz, tx , ty, tz, τa
T ]T (3)

2.2 Shape-free facial patches

A face texture is represented as a shape-free texture (geo-
metrically normalized image). The geometry of this image is
obtained by projecting the standard shape g using a centered
frontal 3D pose onto an image with a given resolution. The
texture of this geometrically normalized image is obtained
by texture mapping from the triangular 2D mesh in the input
image (see Fig. 2) using a piece-wise affine transform, W .

Fig. 2 a An input image with correct adaptation. b The corresponding
shape-free facial image
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The warping process applied to an input image y is denoted
by:

x(b) = W(y, b) (4)

where x denotes the shape-free texture patch and b denotes
the geometrical parameters. Several resolution levels can be
chosen for the shape-free textures. The reported results are
obtained with a shape-free patch of 5,392 pixels. Regarding
photometric transformations, a zero-mean unit-variance nor-
malization is used to partially compensate for contrast varia-
tions. The complete image transformation is implemented as
follows: (1) transfer the texture y using the piece-wise affine
transform associated with the vector b, and (2) perform the
grey-level normalization of the obtained patch.

3 Problem formulation and adaptive observation model

Given a video sequence depicting a moving head/face, we
would like to recover, for each frame, the 3D head pose and
the facial actions encoded by the control vector τa. In other
words, we would like to estimate the vector bt [Eq. (3)]
at time t given all the observed data until time t , denoted
y1:t ≡ {y1, . . . , yt }. In a tracking context, the model param-
eters associated with the current frame will be handed over
to the next frame.

For each input frame yt , the observation is simply the
warped texture patch (the shape-free patch) associated with
the geometric parameters bt . We use the hat symbol for
the tracked parameters and textures. For a given frame t ,
b̂t represents the computed geometric parameters and x̂t the
corresponding shape-free patch, that is,

x̂t = x(b̂t ) = W(yt , b̂t ) (5)

The estimation of b̂t from the sequence of images will be
presented in the next section.

The appearance model associated with the shape-free
facial patch at time t , is time varying in that it models the
appearances present in all observations x̂ up to time (t − 1).
This can be required due, for instance, to illumination changes
and out-of-plane rotated faces.

By assuming that the pixels within the shape-free patch
are independent, we can model the appearance using a mul-
tivariate Gaussian with a diagonal covariance matrix Σ . The
choice of a Gaussian distribution is motivated by the fact
that this kind of distribution provides simple and general
model for additive noises. In other words, this multivariate
Gaussian is the distribution of the facial patches x̂t . Let µ be
the Gaussian center and σ the vector containing the square
root of the diagonal elements of the covariance matrix Σ . µ

and σ are d-vectors (d is the size of x). Although the inde-
pendence assumption may be violated, at least locally, we
adopt it in our work in order to keep the problem tractable.

In summary, the observation likelihood is written as

p(yt |bt ) = p(xt |bt ) =
d∏

i=1

N(xi ;µi , σi )t (6)

where N(xi ;µi , σi ) is a normal density:

N(xi ;µi , σi ) = (2πσ 2
i )−1/2 exp

[
−ρ

(
xi − µi

σi

)]
,

ρ(x) = 1

2
x2

(7)

We assume that the appearance model summarizes the past
observations under an exponential envelope, that is, the past
observations are exponentially forgotten with respect to the
current texture. When the appearance is tracked for the cur-
rent input image, i.e., the texture x̂t is available, we can com-
pute the updated appearance and use it to track in the next
frame.

It can be shown that the appearance model parameters, i.e.,
the µi and σi values can be updated from time t to time (t+1)

using the following equations (see [15] for more details on
OAMs):

µi(t+1)
= (1 − α)µi(t) + α x̂i(t) (8)

σ 2
i(t+1)

= (1 − α) σ 2
i(t) + α (x̂i(t) − µi(t) )

2 (9)

This technique, also called recursive filtering, is simple, time-
efficient and therefore suitable for real-time applications. The
appearance parameters reflect the most recent observations
within a roughly L = 1/α window with exponential decay.
Figure 3 shows an envelope having α equal to 0.01 where
the current frame is 500. In this figure, the vertical coordi-
nate denotes the blending weight associated with all previous
frames. For example, the contribution of frame 450 to the cur-
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Fig. 3 A sliding exponential envelope having α equal to 0.01. The
current frame/time is 500. The vertical coordinate corresponds to the
blending weight
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rent texture model is weighted by 0.006. Recall that the recur-
sive Eqs. (8) and (9) are performing this blend implicitly with-
out doing an explicit summation over the
whole frames.

Note that µ is initialized with the first patch x. However,
Eq. (9) is not used until the number of frames reaches a given
value (e.g., the first 40 frames). For these frames, the classi-
cal variance is used, that is, Eq. (9) is used with α being set
to 1

t .
Here we used a single Gaussian to model the appearance

of each pixel in the shape-free template. However, model-
ing the appearance with Gaussian mixtures can also be used
(e.g., see [16,24]).

4 Tracking with a registration technique

Consider the state vector b = [θx , θy, θz, tx , ty, tz, τa
T]T

encapsulating the 3D head pose and the facial animations.
In this section, we will show how this state can be recovered
for time t from the previous known state b̂t−1.

The sought geometrical parameters bt at time t are related
to the previous parameters by the following equation (b̂t−1

is known):

bt = b̂t−1 + ∆bt (10)

where ∆bt is the unknown shift in the geometric parameters.
This shift is estimated using a region-based registration tech-
nique that does not need any image feature extraction. In other
words, ∆bt is estimated such that the warped texture will be
as close as possible to the facial appearance model. For this
purpose, we minimize the Mahalanobis distance between the
warped texture and the current appearance mean,

min
bt

e(bt ) = min
bt

D(x(bt ), µt ) =
d∑

i=1

(
xi − µi

σi

)2

(11)

The above criterion can be minimized using iterative first-
order linear approximation which is equivalent to a Gauss–
Newton method. It is worthwhile noting that minimizing the
above criterion is equivalent to maximizing the likelihood
measure given by Eq. (6).

4.1 Registration

We assume that there exists bt = b̂t−1 + ∆bt such that the
warped shape-free texture will be very close to the appear-
ance mean, i.e,

W(yt , bt ) � µt

Approximating W(yt , bt ) via a first-order Taylor series
expansion around b̂t−1 yields

W(yt , bt ) � W(yt , b̂t−1) + Gt (bt − b̂t−1)

where Gt is the gradient matrix. By combining the previous
two equations we have:

µt = W(yt , b̂t−1) + Gt (bt − b̂t−1)

Therefore, the shift in the parameter space is given by:

∆bt = bt − b̂t−1 = −G†
t (W(yt , b̂t−1) − µt ) (12)

In practice, the solution bt (or equivalently the shift ∆bt )
is estimated by running several iterations until the error can-
not be improved. We proceed as follows.

Starting from b = b̂t−1, we compute the error vector
(W(yt , b̂t−1)−µt ) and the corresponding Mahalanobis dis-
tance e(b) [given by Eq. (11)]. We find a shift ∆b by mul-
tiplying the error vector with the negative pseudo-inverse of
the gradient matrix using Eq. (12). The vector ∆b gives a
displacement in the search space for which the error, e, can
be minimized. We compute a new parameter vector and a
new error:

b′ = b + ρ ∆b (13)

e′ = e(b′)

where ρ is a positive real.
If e′ < e, we update b according to Eq. (13) and the pro-

cess is iterated until convergence. If e′ ≥ e, we try smaller
update steps in the same direction (i.e., a smaller ρ is used).
Convergence is declared when the error cannot be improved
anymore. In practice, we found that convergence is reached
with less than ten iterations. The gradient matrix is built
online using numerical differences.

4.2 Improving the minimized criterion

When significant out-of-plane rotations of the face occur,
local self occlusions and distortions may appear in the shape-
free texture x. In order to downweight their influence on the
registration technique we incorporate the orientation of indi-
vidual triangles of the 3D mesh in the minimized criterion
such that the contribution of any triangle becomes less sig-
nificant as it shies away from the frontal view. Recall that
the orientation of any 3D triangle with respect to the camera
can be recovered since the 3D rotation between the 3D head
model and the camera frame is tracked. For a given triangle,
m, the angle γm is given by the angle between the optical
axis k = (0, 0, 1)T and the normal to the triangle expressed
in the camera frame.

For any given frame, the minimized criterion (11) becomes:

min
bt

e(bt ) =
d∑

i=1

w(γi )

(
xi − µi

σi

)2

(14)

where γi is the angle associated to the triangle containing
the pixel i and w(γi ) is a monotonic decreasing function.
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Fig. 4 Three different 3D face orientations (from top to bottom): fron-
tal view, a vertical rotation to the left, and a vertical rotation to the right.
The first column depicts the angle of all 3D triangles with respect to the
camera. Dark grey level corresponds to small angles (the 3D triangle
is in fronto-parallel plane) while bright grey level corresponds to large
angles. The right column depicts the corresponding shape-free texture

For example, we use

w(γi ) = 1

1 + γ j

Figure 4 displays three real 3D face poses: a frontal view and
two non-frontal views. The left column shows the orientation
of all individual triangles of the 3D mesh. The right column
shows the corresponding shape-free texture.

4.3 Tracking results

Figure 5 displays the head and facial action tracking results
associated with a 300-frame video sequence (only two frames

are shown). This video sequence depicts head motions and
facial expressions. The upper left corner of each image shows
the current appearance (µt ) and the current shape-free texture
(x̂t ).

On a 3.2 GHz PC, a non-optimized C code of the approach
computes the 12 degrees of freedom (the six 3D head pose
parameters and the six facial actions) in less than 50 ms if
the patch resolution is 1,310 pixels. About half that time is
required to compute the 3D head pose parameters.

Figures 6, 7, and 8 illustrate the estimated 3D head pose
parameters associated with three 300-frame sequences. The
three sequences are of resolution 640 × 480 pixels. Each
figure illustrates a few frames of the video as well as the
estimated 3D head pose parameters (the three rotations and
the three translations) as a function of the sequence frames.
These parameters are presented in six graphs. Since the used
camera is calibrated the absolute translation is recovered.
These video sequences will be used for accuracy evaluation
of the monocular tracker using the framework proposed in
Sect. 5.

5 Accuracy evaluation

5.1 3D facial data and ground-truth 3D face motions

A commercial stereo vision camera system (Bumblebee from
Point Grey (http://www.ptgrey.com)) was used. It consists
of two Sony ICX084 color CCDs with 6 mm focal length
lenses. Bumblebee is a precalibrated system that does not
require in-field calibration. The baseline of the stereo head
is 12 cm and is connected to the computer by a IEEE-1394
connector. Right and left color images were captured at a
resolution of 640×480 pixels and a frame rate near to 30 fps.
After capturing these right and left images, 3D data were
computed using the provided 3D reconstruction software.
In our evaluation tests, the stereo rig was placed at a dis-
tance of 60–80 cm from the subject’s head. Figure 9a shows
a stereo pair used in our evaluation. Figure 9b shows the
corresponding 3D facial data visualized from three differ-
ent points of view. Figure 9c depicts the 3D data associated
with another stereo pair depicting a non-frontal face. In our

Fig. 5 Tracking the 3D head
pose and the facial actions. The
upper left corner of each image
shows the current appearance µt
and the current texture x̂t
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Fig. 6 Tracking the 3D head
pose parameters associated with
the first video sequence. Only
frames 81 and 244 are shown.
The six plots display the
estimated six degrees of
freedom of the 3D head pose as
a function of time
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case, the 3D face model (a cloud of 3D points) is manually
selected in the first stereo frame which is captured in a frontal
view (Fig. 9b). This 3D face model contains about 20,500 3D
points. More elaborated statistical techniques could be used
for extracting the 3D facial cloud in the first range image (e.g.,

[18]). For subsequent frames, the registration is performed
automatically by the monocular tracker and the iterative
closest point algorithm (see below).

As mentioned before, the proposed evaluation consists in
computing the 3D face motions using two different methods:
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Fig. 7 The estimated 3D head
pose parameters associated with
the second video. Only frames
73, and 112 are shown

0 50 100 150 200 250 300
−50

−40

−30

−20

−10

0

10

20

30

40

50

Frames

D
eg

.

Pitch

0 50 100 150 200 250 300
−50

−40

−30

−20

−10

0

10

20

30

40

50

Frames

D
eg

.

Yaw

0 50 100 150 200 250 300
−50

−40

−30

−20

−10

0

10

20

30

40

50

Frames

D
eg

.

Roll

0 50 100 150 200 250 300
−20

−15

−10

−5

0

5

10

15

20

Frames

C
m

X Translation

0 50 100 150 200 250 300
−20

−15

−10

−5

0

5

10

15

20

Frames

C
m

Y Translation

0 50 100 150 200 250 300

50

55

60

65

70

75

80

85

90

95

100

Frames

C
m

Z Translation 

(1) the proposed appearance-based approach (Sect. 4) using
the monocular sequence provided by the right camera, and
(2) the 3D face motions computed by 3D registration of
3D facial data in different frames. Recall that the 3D rigid
displacement that align two facial clouds obtained at two

different frames is equivalent to the performed 3D head
motion between these two frames.

The 3D registration is computed by means of the well-
known iterative closest point, ICP, algorithm. ICP, also refer-
enced in the literature as a fine registration technique, assumes
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Fig. 8 The estimated 3D head
pose parameters associated with
the third video. Only frames 38,
167, 247, and 283 are shown
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Fig. 9 Dense 3D facial data
provided by a stereo head. a A
stereo pair. b The corresponding
computed 3D facial data with
mapped texture displayed from
three different points of view.
c 3D facial data associated to
another stereo pair illustrating a
non-frontal face

Fig. 10 3D registration of two facial clouds provided at frames 1 and
39, which are separated by a large yaw angle (about 40◦). a The range
facial data associated to frames 1 and 39, expressed in the same coor-
dinate system. b Alignment results using the relative 3D face motion
provided by our monocular tracker. c Refinement of the registration
using the iterative closet point algorithm

that the clouds to be registered are very close. ICP has been
originally presented by Besl and McKay [3]. In our
evaluation, since we use the 3D facial data/cloud in the first

Fig. 11 3D registration of two facial clouds provided at frames 1 and
85. a The range facial data associated to frames 1 and 85, expressed in
the same coordinate system. b Alignment results using the relative 3D
face motion provided by our monocular tracker. c Refinement of the
registration using the iterative closet point algorithm

reference frame as a face model, the 3D registration may fail
in subsequent frames containing large rotations: thus our idea
is to use the monocular tracker solution as a starting solution
for the ICP algorithm (see Figs. 10, 11). Therefore, the ICP
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Fig. 12 3D head pose errors
computed by the ICP algorithm
associated with the first
sequence. For each degree of
freedom, the absolute value of
the error is plotted. For each
frame, the ICP algorithm was
initialized by the output of the
monocular tracker, thus the
refined 3D registration can be
considered as the monocular
tracker error
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returns a 3D rigid displacement that directly quantifies the
monocular tracker accuracy.

5.2 Tracker accuracy

In order to evaluate the accuracy of the 3D head pose pro-
vided by the monocular tracker, we have used three different
300-frame stereo sequences associated with two persons. The
corresponding monocular sequences are shown in Figs. 6, 7,
and 8. In all these sequences, the subject was asked to move
his head such that it performs the three out-of-plane motions
(pitch, yaw and depth). Although the 3D head pose param-
eters shown in these figures are not error free (they are esti-
mated by the monocular tracker), they give a good idea about

the actual performed head motions. Thus, in the first two
sequences the subjects were at about 65 cm from the cam-
eras, in the third sequence the subject was at about 80 cm
from the cameras. Moreover, in the third sequence, the verti-
cal rotations of the head were very large, i.e., the actual yaw
angle was greater than 60◦.

For each stereo sequence, the 3D head pose was tracked
using two approaches: (1) the monocular tracker and (2) the
joint use of the stereo-based facial data and the ICP algo-
rithm. The 3D head pose parameters provided by the mon-
ocular tracker gives the position and orientation of the 3D
wireframe model with respect to the right camera frame (the
one used by the monocular tracker). The 3D head motion
is set to the 3D motion between the first frame and the

123



438 F. Dornaika, A. D. Sappa

Fig. 13 3D head pose errors
computed by the ICP algorithm
associated with the second
sequence
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current frame, which is easily recovered from the correspond-
ing absolute 3D head poses.

Figure 10 illustrates the estimated 3D head pose/motion
associated with frame 39. Figure 10a illustrates the range
facial data associated with frames 1 and 39, expressed in the
same coordinate system. One can easily see that the face has
performed a vertical rotation of about 40◦. Figure 10b dis-
plays the 3D alignment obtained using the relative 3D face
motion provided by the monocular tracker. Figure 10c shows
the refinement of the registration using the ICP algorithm
whose returned displacement gives the 3D error associated
with the monocular tracker. One can notice that the monoc-
ular registration technique brings the two 3D clouds into a

good alignment even though there is an offset in the in-depth
translation. This is due to the monocular vision effect and to
the use of a frontal texture model.

Figure 11 illustrates the estimated 3D head pose/motion
associated with frame 85 using the monocular tracker and
the ICP algorithm.

Figures 12 and 13 depict the monocular 3D tracker errors
associated with the first and second video sequences,
respectively. These are computed by the ICP algorithm as a
refinement 3D displacement between two clouds. As can be
seen, the 3D errors are generally quite small. One can notice
the large yaw and depth errors associated with the start of the
second sequence. This can be explained by the fact that the
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Fig. 14 3D head pose errors
associated with the third
sequence (see Fig. 8). For each
degree of freedom, the absolute
value of the error is plotted
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adaptive appearance model was not very stable due the fast
face motion (recall that the appearance model is built online
from shape-free facial patches).

Figure 14 depicts the monocular tracker errors associated
with the third sequence (depicted in Fig. 8). These errors
are computed by the ICP algorithm. As can be seen, the
errors increase as the face shies away from the frontal view.
However, the tracker never loses the track. As can be seen,
due to the effect of monocular vision and to the large out-
of-plane rotations (more than 60◦) the estimated depth may
suffer from a 6 cm error. However, within a useful working
range about the frontal view, this error is about 3 cm which

corresponds to one pixel error given our camera parameters
and the actual depth of the face.

Since the origin of the Candide model coordinate system
is located on the nose’s bridge and since the 3D pose errors
are associated with the relative 3D motion, it follows that the
translational part of the 3D motion is coupled to the rotational
part. This means that an error affecting one degree of free-
dom could affect other degrees of freedom in order to obtain
a good facial texture registration. For example, this kind of
coupling is shown for frames 100–200 in Fig. 14, one can
easily see that the error on the pitch angle and the in-depth
translation have also affected the vertical translation.
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Table 1 The average 3D head pose errors associated with the three
video sequences used in the evaluation experiments

θx (deg) θy(deg) θz(deg) tx (cm) ty(cm) tz(cm)

First experiment 2.24 2.63 0.40 0.06 0.13 1.15

Second experiment 4.37 4.82 0.73 0.24 0.26 1.33

Third experiment 9.17 8.28 2.79 0.26 0.81 3.34

Table 1 gives the average errors in the 3D head pose param-
eters associated with the three used experiments. As can be
seen, the error associated with the third experiment is larger
than the one associated with the first two experiments.

6 Discussion

In this paper, we have described our appearance-based 3D
face tracker. We have introduced a general and efficient eval-
uation framework that is based on stereo range facial data.
This framework can be used for evaluating any appearance-
based face tracker. Moreover, it has the advantage that there
is no active sensor involved.

The evaluation of the adaptive appearance-based 3D face
tracker has indicated that the out-of-plane motions can be
off the track whenever the absolute orientation of the face is
so far from the frontal view, e.g, a vertical rotation of 60◦.
However, even in the extreme cases, the appearance-based
tracker is still usable and does not suffer from drifting due to
these out-of-plane motion inaccuracies that can be explained
not only by the monocular effect but also by the fact that
the texture/appearance of the 3D wireframe is modeled in a
frontal view. Adopting multi-view shape-free texture models
which are associated with different view points is expected to
considerably decrease such inaccuracies. Alternatively, one
can adopt a multi-camera system that partitions the 3D space
such that at least one camera includes a near frontal view.
In our case, the latter alternative could be preferred to the
former one since our 3D mesh model essentially depicts a
frontal face.

Although the joint use of 3D facial data and the ICP algo-
rithm as a 3D head tracker could be attractive, the significant
computational cost of the ICP algorithm prohibits real-time
performance. In light of this evaluation, one is able to adjust
the experimental set-up such that the monocular tracker
provides accurate results. Thus, in order to obtain accurate
tracking results using the monocular tracker it is always rec-
ommended to use a camera having a long focal length. How-
ever, if the camera has a short focal length or it does not have
a zooming mechanism the user should be as close as possi-
ble to the camera in order to get the most accurate 3D head
motions.
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