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Abstract Traditionally, in machine vision images are rep-
resented using cartesian coordinates with uniform sampling
along the axes. On the contrary, biological vision systems
represent images using polar coordinates with non-uniform
sampling. For various advantages provided by space-variant
representations many researchers are interested in space-
variant computer vision. In this direction the current work
proposes a novel and simple space variant representation of
images. The proposed representation is compared with the
classical log-polar mapping. The log-polar representation is
motivated by biological vision having the characteristic of
higher resolution at the fovea and reduced resolution at the
periphery. On the contrary to the log-polar, the proposed
new representation has higher resolution at the periphery
and lower resolution at the fovea. Our proposal is proved
to be a better representation in navigational scenarios such
as driver assistance systems and robotics. The experimental
results involve analysis of optical flow fields computed on
both proposed and log-polar representations. Additionally,
an egomotion estimation application is also shown as an il-
lustrative example. The experimental analysis comprises re-
sults from synthetic as well as real sequences.
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1 Introduction

Current technology allows to take larger and larger images,
at the same time computational power is also increasing, be-
ing able to process large amount of information in short pe-
riod of time. Unfortunately the trade-off between computa-
tion time and amount of information to process is still there
and needs specific solutions. One way to tackle this chal-
lenging problem is by means of the use of space-variant
representations, which have been motivated by the mam-
malian biological vision systems [5, 23], and allows to re-
duce the amount of information to be processed. The mam-
malian retina is a space variant sensor with higher sensory
neurons at fovea and gradually reducing towards periphery.
This leads to high resolution at the center and wide field
of view simultaneously without many sensing elements in
the periphery. There have been many attempts to design
space-variant imaging sensors [27] as well as approaches
based on such representations for computer vision applica-
tions (e.g., [13, 32]). On the other hand, space variant rep-
resented images can be obtained from the conventional rect-
angular sensors and can have the same advantage of space-
variant sensors. The Log-Polar representation (LPR) of im-
ages has been originated from such biological vision and has
been extensively studied in the computer vision community.
Additionally, it has been also exploited in the robotics and
active vision communities for pattern recognition [28] and
navigation [10] tasks. The LPR has many advantages with
respect to the conventional cartesian representation of im-
ages [26]; the most important are the reduction in the data
and invariance to scale and rotation. The data reduction due
to the polar mapping and logarithmic sub-sampling leads to
high resolution in the fovea and low resolution in the pe-
riphery, which is a desired feature for instance in the active
vision community. The importance of loss of information in
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LPR due to reduced resolution in the periphery depends on
the application of interest.

A review of log-polar imaging is presented in [27] for
robotic vision applications such as: visual attention, target
tracking and 3D perception. All these applications benefit
from the high resolution of the fovea region. Also, there
have been attempts to use LPRs for motion analysis (e.g.,
[6, 10, 29]), mainly based on the estimation of optical flow
(e.g., [3, 11, 12, 30]). For instance, [26] presents the advan-
tages of polar and log-polar mapping to the cartesian rep-
resentation and proposes a technique to estimate time-to-
impact using optical flow. Log-polar mapping and its prop-
erties are described in [12]; and it proposes the computa-
tion of normal optical flow. In [33], a novel optical flow
computation approach is proposed. It is based on the con-
cept of variable window and generalized dynamic image
model. The variable window adapts its size along the LP
space. Also working in the LP space, [11] analyzes the po-
lar deformation and proposes several local optical flow es-
timation techniques on log-polar plane. Based on LPR, an
approach for active monocular fixation is proposed in [34]
and an application of docking using rotational-component
of log-polar optical flow is proposed in [3]. The optical flow
approaches presented in [3, 11, 12, 26] and [33] are all local
approaches. However the dense flow fields would be more
useful for driver assistance applications such as obstacle de-
tection, egomotion estimation or collision avoidance. In this
paper we use a global optical flow technique to obtain dense
flow-field on space-variant represented images.

In the particular contexts of robotics and advanced driver
assistance systems (ADAS), LPR has attracted the attention
of many researchers. In general, in these fields LPRs are ob-
tained using the vanishing point (VP) as a center of the log-
polar reference system. VP(x,y,z) corresponds to a point at
z → ∞ where two parallel lines of a road appear to converge
in the image plane. Since LPR results in a high sampling in
the fovea region, points in the periphery are undersampled.
It should be noted that the periphery of the 2D image (in par-
ticular the lateral and bottom parts) corresponds to regions in
the 3D space near to the camera reference system, hence are
the most important areas for robotics navigation tasks and
ADAS applications. Furthermore, points near to the camera
are not only useful for detection tasks but also for an accu-
rate calibration; note that the accuracy of 3D data decreases
with the depth.

In the current work classical LPR is studied and a new
space variant representation scheme called Reverse Log-
Polar Representation (RLPR) is proposed. It is intended to
overcome the disadvantage of LPR with respect to the sam-
pling in periphery. In addition to the benefit of reduction
in information to be processed similar to LPR, RLPR pro-
duces higher accurate results in navigational tasks. Unlike

LPR which has advantages in pattern recognition applica-
tions with rich fovea and sparse periphery, the newly pro-
posed spatial representation has advantages in navigational
tasks. These space variant representations are used for opti-
cal flow estimation in forward facing motion problems. The
performance of both representations is analyzed using dense
optical flow. Additionally the accuracy of both space variant
representations to estimate the egomotion parameters of a
moving camera is evaluated. The paper is organized as fol-
lows. Section 2 initially overviews the dense optical flow es-
timation; Section 3 presents a statistical analysis that support
the use of polar representations, which motivates the current
work. Then, the proposed space variant representation is in-
troduced in Sect. 4. Experimental results and comparative
studies are given in Sect. 5 together with an application to
the egomotion estimation problem. Finally, the work is con-
cluded in Sect. 6.

2 Optical Flow Overview

Optical flow is defined as a velocity field between an im-
age pair, which transforms one image into the next image
in a sequence. Even though many attempts have been made
to estimate motion since a long time, concrete formulations
were first proposed by Horn and Schunck [16], and Lucas
and Kanade [19] in 1981. Broadly, optical flow methods can
be classified as local and global methods. The local methods
give sparse flow fields, whereas global methods give dense
flow fields using variational methods. The first variational
optical flow method was proposed by Horn and Schunck
[16]. The classical variational method is based on two as-
sumptions: the brightness constancy assumption (BCA) and
homogeneous regularization. BCA is also called as optical
flow constraint, assumes the grey value of an object remains
constant over time. Whereas regularization assumes that the
resulting flow field varies smoothly all over the image. The
BCA can be formulated as:

I1
(
X + V (X)

) − I0(X) = 0, (1)

where I0 and I1 are two consecutive images of a given se-
quence; X = (x, y) is a pixel location within the rectangu-
lar image domain Ω ⊆ R2; V = (u(X), v(X)) is the two-
dimensional displacement field. Linearising above equation
using first-order Taylor expansion we get optical flow con-
straint as:

Ixu + Iyv + It = 0, (2)

where Ix , Iy and It are the partial derivatives with respect
to x, y and t respectively. Since optical flow is a highly ill-
posed inverse problem, using only local intensity constraints
does not provide enough information to infer meaningful
flow fields. In particular, optical flow computation suffers
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Fig. 1 Synthetic sequence of an
urban scenario: (top-left) Image
I0 at time t ; (bottom-left) Image
I1 at time t + 1; (top-right)
optical flow vectors computed
from I0 and I1; (bottom-right)
enlarged region of the flow field

from two problems: first, no information is available in non-
textured regions. Second, one can only compute the normal
flow, i.e. the motion perpendicular to the edges. This prob-
lem is generally known as the aperture problem. It is clear
that in order to solve this problem some kind of regular-
ization is needed. The Horn and Schunk [16] method over-
comes this by assuming resulting flow field changes smooth
all over the image. This can be formulated as penalizing
large spatial flow gradients |∇u| and |∇v|. Combining BCA
and smoothness assumptions in a single variational frame-
work and squaring both constraints in order to penalize neg-
ative and positive derivations in the same way, the following
energy functional is obtained.

E(V ) =
∫

Ω

{
(Ixu + Iyv + It )

2

︸ ︷︷ ︸
Data Term

+ α
(|∇u|2 + |∇v|2︸ ︷︷ ︸

Regularization

)}
dX,

(3)

where α is a regularization parameter.
Variational optical flow energy functions can be mini-

mized in a number of ways. The most used way is to ex-
press and solve the set of Euler-Lagrange equations of the
energy model. The thesis [7] presents various numerical lin-
ear and non-linear equation systems solvers such as: ba-
sic Gauss-Seidel method, its variants, advanced methods
such as successive overrelaxation (SOR) technique, unidi-
rectional multigrid methods in the form of coarse-to-fine
strategies and bidirectional multigrid methods. Another pop-
ular way proposed in [35] using a dual formulation is based
on iterative alternating steps to solve TV-L1 optical flow en-
ergy model.

For the work presented in this paper, we use a re-
cent variational optical flow technique proposed in [24].
It explores the basic formulation and some concepts such
as pre-processing, coarse-to-fine warping, graduated non-
convexity, interpolation, derivatives, and median filtering.
In [24], an improved model underlying median filtering is
proposed by using best of the explored concepts in optical
flow computation. As an illustration Fig. 1 shows two im-
ages and the ground-truth optical flow field between them.

3 Image Motion Statistics

Image motion statistics, in particular through the use of opti-
cal flow, have been recently studied and exploited (e.g., [22]
and [1]). In the current section we follow previous stud-
ies using synthetic sequences of urban road scenarios (see
Fig. 1) where cartesian and polar representations are used to
depict motion information between two consecutive frames.

Figure 2 shows joint histograms of image motion deriva-
tives in cartesian and polar coordinates—the image motion
refers to the flow field estimated as indicated in the previous
section. These joint histograms are then used for comput-
ing the mutual information (MI) between the variables. In
probability theory, the mutual information of two random
variables is a quantity that measures the mutual dependence
of the two variables (see [9, 15]). Formally, it can be defined
as:

MI(R;S) =
∑

r∈R

∑

s∈S

p(r, s) log
p(r, s)

p(r)p(s)
, (4)
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Fig. 2 Joint histograms of
image motion derivatives in
cartesian and polar coordinates
of synthetic sequences of an
urban road scenario. On top of
each figure MI value is depicted

where p(r, s) is the joint probability distribution function of
R and S; p(r) and p(s) are the marginal probability dis-
tribution functions. The joint probability function p(r, s) is
directly obtained from the cell (r, s) in the joint histogram of
image motion, while p(r) and p(s) are found by summing
along each dimension of that joint histogram. Small values
of MI indicate approximate statistical independence. Hence,
as shown in Fig. 2 (see MI at the top of every illustration),
it can be concluded that it is more appropriate to represent
the image motion in a polar coordinate system. A similar
conclusion has been reached in [1] and [22].

The work in [1] is based on a polar representation of the
flow vectors in optical flow formulation. The results using
this formulation are shown to be same as the state of the
art results on traditional datasets, and better on specular and
fluid flow datasets. The statistics presented in the current
section suggest us that in the particular case of forward fac-
ing vision systems, such as those used in robotics or driver
assistance, motion is better represented in a polar way. In the
current work we use polar based image representations; their
advantages have been vastly used by the robotics commu-
nity. The classical log-polar representation is explored and a
new space variant representation is proposed as presented in
the next section.

4 Space-Variant Representations

As presented in the previous section a polar representation
offers advantages with respect to the cartesian one (in par-
ticular due to the independence of motion coordinates [1]).
In the current section polar space-variant image representa-
tions are discussed.

A log-polar representation is a polar mapping with log-
arithmic distance along the radial axis. For a given pixel
(x, y), the log-polar (ρ, θ) are defined as:

ρ = log
(√

(x − x0)2 + (y − y0)2
)
,

θ = arctan
(
(y − y0)/(x − x0)

)
,

(5)

where (x0, y0) is the origin of mapping. The current work fo-
cuses on the study of a particular scenario of forward facing
moving platforms, hence the origin of the reference system
corresponds to the vanishing point.

As mentioned in Sect. 1, LPR oversamples the fovea
and undersamples the periphery. This leads to the non-
preservation of vital information of the periphery useful for
forward facing vision applications. The latter motivates us
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Fig. 3 (Left) A synthetic image.
(Middle-top) Log-Polar
sampling. (Middle-bottom)
Reverse-Log-Polar sampling.
(Right-top) Cartesian
representation of LP image.
(Right-bottom) Cartesian
representation of RLP image

to propose a more appropriate space variant representation,
where a (x, y) pixel is mapped as:

ρ = log
(
rmax −

√
(x − x0)2 + (y − y0)2

)
,

θ = arctan
(
(y − y0)/(x − x0)

)
,

(6)

where rmax is the radius of the circle around VP; typically
rmax is the largest inner circle within the cartesian image
boundary around VP. The image contained inside the circu-
lar region is to be mapped. The proposed mapping is dif-
ferent from LPR in the sense that logarithmic subsampling
is from the periphery towards the center and will be re-
ferred to as Reverse Log-Polar Representation (RLPR). Fig-
ure 3 (right) shows LP (top) and RLP (bottom) representa-
tions of the same image Fig. 3 (left). In both cases the im-
ages are sparsely sampled as depicted in Fig. 3 (middle).
Since the LP/RLP transformations involve both many-to-
one and one-to-many mapping, the LP/RLP images cannot
be straight forwardly dense. The dense images presented in
Fig. 3 (right) are obtained by querying for each (ρ, θ ) to the
cartesian and by bi-linear interpolation—horizontal axis is
angles (θ ′s) and vertical axis is distances (ρ′s). As can be
seen in the grids in Fig. 3 (middle), qualitatively, the RLPR
sampling better preserves the periphery information, which
covers most part of the road at the bottom in the scenario
of a moving vehicle. Further experiments in this paper are
performed on these images (shown in Fig. 3 (right)), repre-
sented as rectangular images, but sampled using LP and RLP
sampling (Fig. 3 (middle)) from the original image shown in
Fig. 3 (left).

5 Experimental Results

As mentioned in Sect. 1, there have been many applications
using LP represented images, some of them based on the

optical flow estimation in that space. The current work aims
to estimate the optical flow on RLP represented images and
compare them with results from LPRs. Further these opti-
cal flow fields are evaluated by estimating orientations of a
moving camera.

In LP/RLP representations of images the origin of map-
ping should be the vanishing point in the scenario of a for-
ward facing moving vehicle, so that the mapped images
better suit the applications. In the current work, vanishing
points computed from a RANSAC based approach [20] are
used. The images are mapped to LP/RLP as explained in
Sect. 4 and then, the optical flow is computed on these LP
and RLP rectangular represented images. The bottleneck to
compare the flow fields from LP and RLP representations is
that the flow field patches at a particular location in both
representations correspond to different regions of the im-
age in cartesian with varied resolution. Hence, the frame-
work proposed to perform the comparisons consists in in-
verse mapping the flow fields back to cartesian and com-
pare them in the cartesian space. Figure 4 shows an im-
age pair in cartesian (top-left), their LPRs (middle-left) and
RLPRs (bottom-left) and in the (top-right) the ground-truth
flow field, the computed flow field of LPR (middle-right)
and RLPR (bottom-right). The color map used to display op-
tical flow is shown in Fig. 4 bottom right corner. Since the
image pairs correspond to translation along the camera focal
axis, the ground-truth flow field in cartesian looks diverging
(see Fig. 4 (top-right)), vectors appear originating from a
VP toward the boundary in all directions. Hence, the com-
puted flow fields in both LP/RLP representations looks blue
in color indicating all the vectors point downwards. In order
to compare the flow fields of LP and RLP, these flow fields
are mapped back to cartesian. Figure 5 depicts the flow fields
of both LP and RLP mapped back to cartesian. These flow



J Math Imaging Vis (2013) 47:48–59 53

Fig. 4 (Top) Pair of images and
flow fields in Cartesian.
(Middle) LP representations.
(Bottom) RLP representations
and (bottom-right-corner)
colormap used to display flow
fields

Fig. 5 Inverse mapped flow
fields from (left) LP and (right)
RLP

fields in cartesian are sparse. Hereinafter, the LP and RLP
representations of flow fields refer to these mapped back to
cartesian.

The well known error measures to compare flow fields
are Average Angular Error (AAE) and Average End-Point
error (AEP) [2, 4]. The AAE is firstly chosen for the detailed
study in the current work. According to [4], the angular error
e between two vectors (u1, v1) and (u2, v2) is given by:

e
(
(u1, v1), (u2, v2)

)

= arccos

(
u1u2 + v1v2 + 1

√
(u2

1 + v2
1 + 1)(u2

2 + v2
2 + 1)

)
. (7)

Since the flow fields from LP and RLP representations
are sparse and of different resolutions along radial direction,
in order to do a fair comparison a common set of pixels (in-
tersection mask) is selected. Figure 6 shows the masks (i.e.,
locations where the flow vectors exist) of LPR (left) and
RLPR (middle) flow fields and the intersection mask (right)
that is the common set of positions those have flow values in
both representations. Then, AAE between LP and ground-
truth flow fields, and between RLP and ground-truth flow
fields are computed using the obtained intersection mask.
Table 1 shows AAEs of flow fields from ten selected differ-
ent image pairs from sequence-1 of set-2 of [31]. The images
are of resolution 480×640. They are mapped to LP and RLP
representations of resolution 230 × 360, placing the vanish-
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Fig. 6 (Left) LP mask. (Middle)
RLP mask. (Right) Mask from
their intersection

Table 1 AAEs (deg.) for selected ten flow fields from sequences [31] in LPR and RLPR

1 2 3 4 5 6 7 8 9 10

Seq. 1 LPR 24.3 24.3 23.9 23.9 23.9 23.8 23.6 23.7 23.5 23.4

RLPR 20.9 19.1 19.0 19.4 18.3 18.4 18.4 18.0 17.9 18.9

Seq. 2 LPR 24.3 24.5 27.4 27.1 24.3 24.6 24.7 24.5 24.7 24.8

RLPR 21.6 21.8 27.2 26.6 21.6 23.3 24.2 23.8 23.8 22.0

ing point at (230,340), computed from [20]. Then, optical
flow is computed on these images using [24]. The flow fields
are mapped back to cartesian and then using the intersection
mask shown in Fig. 6 (right), the AAEs are computed. The
AAEs in Table 1 show that flow fields estimated in RLP rep-
resentations are more accurate than flow fields from LPRs.

A similar experiment on sequence-2 of set-2 of [31] is
performed; results are also presented in Table 1. Vanishing
points in sequence-2 varies, but the most of the frames’ VP
lies in (240,320); hence the resolution of the mapped im-
ages is fixed at 240 × 360. Also in the results of sequence-2,
the RLPR flow fields are more accurate than LPR flow fields.
The difference in AAEs between LP and RLP representa-
tions of sequence-2 is smaller than the results of sequence-
1 because the displacement between consecutive images in
sequence-2 is very high. These large displacements lead to
more stretching in RLP represented images and hence in-
crease in errors in flow fields.

In order to analyze the behavior of space-variant repre-
sentations, we have done experiments for different resolu-
tions in the two sequences presented above (sequence-1 and
sequence-2). The experiments consist of testing different ra-
dial and angular resolutions. Since it is intuitive to keep the
angular resolution equal or higher than 360, otherwise leads
to higher loss of information, we have performed experi-
ments for different angular resolutions such as 360, 720 and
1440. From this first test we conclude that increasing the
angular resolution does not improve results, it only leads to
higher processing. On the contrary, for radial resolution, in
addition to the deep study that will be presented in Fig. 7, we
tested two values for sequence-1. These values corresponds
to the maximum inner circle (230) and minimum bounding
circle (378) covering the whole rectangular cartesian image
respectively from the VP. Similarly, for sequence-2 we con-
sidered 240 and 400 corresponding to inner circle and outer

circle. In sequence-1, 230 is the distance from the VP to the
nearest boundary. Note that in the case of using the outer cir-
cle, a lot of empty space in LP and RLP representations will
be included, which is not desired. Values smaller than 230,
but covering the same area, would yield to more sparse sam-
pling in both LPR and RLP that could introduce more errors
in the estimated optical flow fields. Therefore, as mentioned
above, we have considered 230 × 360 (radial × angular) and
240 × 360 (radial × angular) as appropriate resolutions for
sequence-1 and sequence-2 respectively. These resolutions
are the ones used in all our experiments, which correspond
to the regions contained in the largest inner circle centered
on the VP.

Further experiments are done to analyze how the error
evolves along the space in these representations. Different
concentric circular regions of the flow field around the van-
ishing point, with an increase in the radius of the circle
within the flow field boundary, are considered. At each sized
circle, the AAE is calculated for the region inside the circle
and also for the region outside the circle. This experiment
is done for both LPR and RLPR on sequence-1. Since the
radial axis for the flow fields in sequence-1 is of length 230,
nine circles with increasing radius from 23 till 207, in steps
of 23, are considered. Figure 7 (top-left) and (middle-left)
show the AAEs in colormap for the region inside the circle
at radius 115 for LPR and RLPR. Figure 7 (top-right) and
(middle-right) show the AAEs in colormap for the region
outside the circle at radius 115 for LPR and RLPR respec-
tively. In Fig. 7 (bottom-left), solid line indicates AAEs (the
average of 10 flow fields’ region inside the circle) in LPR
with the increase in radius. The AAE increases as the in-
ner area increases. This proves that the flow field near the
fovea is more accurate than in the periphery in LPR. The
dashed line correspond to AAEs in RLPRs with the increase
in radius. In the plot Fig. 7 (bottom-left) the AAE of RLPR
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Fig. 7 Analysis of AAEs over space in LPR and RLPR (values in colormap scale computed from Eq. (7). (Left) Region inside circle. (Right)
Region outside circle

decreases from radius 138 till the boundary. At radius 207,
where most of the image area is covered, the AAE of RLPR
is lower than the AAE of LPR. This shows RLPR is better
at periphery than LPR.

Figure 7 (bottom-right) shows the AAEs of LPR and
RLPR, outside the circles, with the increase in radii of the

circles. The outer area is getting reduced with the increase
in radius of the circle. The solid line indicating AAE of LPR
increases as the outer area decreases, whereas the dashed
line indicating AAE of RLPR decreases as the outer area
decreases till the circle with radius 161. Then, it increases
due to some artifacts in the extreme periphery of RLPR flow
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Table 2 Mean AAE and mean AEP of synthetic sequences: [31]
(Sequence-1 and Sequence-2 in set-2) and [21], and a real sequence
[18]

AAE AEP

Sequence 1 RLPR 18.3145 1.4043

LPR 23.9895 1.7151

Sequence 2 RLPR 35.9757 6.1254

LPR 47.41 6.4059

Sequence 3 RLPR 26.1972 3.2783

LPR 36.8119 3.9058

Real Sequence RLPR 36.5783 2.1985

LPR 63.7911 2.6398

field. Figure 7 (middle-right) shows the artifact, thin band
of circular arc on the top, whereas this band is absent in the
LPR (top-right) flow field. This plot (bottom-right) gives the
same conclusion obtained from the plot in (bottom-left).

RLPR is better than LPR not only by AAE, Table 2 shows
the mean AAE and mean AEP of all frames in sequence-1
and sequence-2 of set-2 [31] named as Sequence 1 and Se-
quence 2 in the table. Sequence-1 contains 99 flow-fields
and sequence-2 contains 394 flow fields. These two se-
quences resembles a countryside scenario with very good
road texture. Table 2 also provides results of similar exper-
iments on another synthetic sequence and a real sequence.
Sequence 3 in the table is another synthetic sequence of ten
image frames [21] of an urban scenario with asphalt road
texture, which does not contain as much texture as previ-
ous two sequences. The error values for this sequence also
show that still RLPR is better in this case. Finally, a real
sequence is also used to validate the usefulness of the pro-
posed space variant representation. Figure 8 shows a pair of

images from the real sequence used here with an annotated
flow field (top-right), and the corresponding LP (bottom-
left) and RLP (bottom-right) representations. Results from
this real sequence [18] are depicted in the last row of Table 2.
This sequence contains 37 image frames of an urban driv-
ing scenario. This dataset has annotated ground-truth optical
flow. The results for this sequence also reveal the goodness
of RLPR. From the experiments on these four sequences, it
can be confirmed that RLPR is better than LPR in both AAE
and AEP on both synthetic and real sequences.

From the above experiments, it is evident that RLPR
gives more accurate optical flow than LPR. In order to show
the advantages of the better accuracy in RLPR, both repre-
sentations are further evaluated by computing camera ego-
motion [25] on them. The egomotion is the estimation of the
motion (rotation and translation) of a camera from the im-
age sequence acquired by it. This is one of the fundamental
tasks in many advanced driver assistance and robotic appli-
cations. An extensive review of egomotion estimation tech-
niques, from the ADAS field, can be found in [8]. Here we
estimate three orientation parameters (pitch, yaw and roll)
of the camera egomotion using the optical flow of the space
variant representations. This experiment is performed on
sequence-2 of set-2 that has different motions of camera. We
use the 5-point algorithm [17] to estimate these orientation
parameters. For inputting the point sets to 5-point algorithm,
we use a RANSAC [14] based approach that randomly se-
lect k sets of ten points and compute the rotation angles.
In the current work k has been set to 25 samples. Table 3
shows the mean (in radians) and standard-deviation of the
errors in pitch, yaw and roll angles obtained using ground-
truth, Subsampled-Cartesian, LPR and RLPR flow fields of
all frames in the sequence. The mean and standard-deviation

Fig. 8 (Top-left) Pair of images
of a real sequence [18].
(Top-right) Annotated
ground-truth flow field between
the pair of consecutive frames in
the real sequence. (Bottom-left)
LP representations and
(Bottom-right) RLP
representations
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Table 3 Mean and standard-deviation of errors in pitch, yaw and roll in radians of sequence-2 in set-2 [31]

Pitch Yaw Roll

Mean Std Mean Std Mean Std

GTOF 4.08E-07 4.34E-07 5.06E-07 5.90E-07 1.15E-04 1.66E-04

Sub. cart. 2.39E-03 5.44E-03 1.43E-03 4.59E-03 2.63E-03 3.71E-03

LPR 1.67E-03 2.62E-03 9.16E-04 3.10E-03 5.89E-04 8.83E-04

RLPR 1.33E-03 1.63E-03 7.08E-04 1.49E-03 6.77E-04 8.54E-04

Fig. 9 Plots of ground-truth
pitch, yaw and roll angles
through the whole sequence

of errors in pitch, yaw and roll angles by ground-truth opti-
cal flow are smaller than those computed by using optical
flow estimated in Subsampled-Cartesian, LPR and RLPR.
Both space-variant representations (LP and RLP) use only a
quarter of the information used in the original Cartesian rep-
resentation. Hence, in order to have a fair comparison, we
subsampled the original Cartesian images to the resolution
of the space-variant representations (LPR and RLPR), i.e.,
to 240 × 360; this is referred hereinafter to as Subsampled-

Cartesian representation. The orientation parameters are es-
timated using the optical flow computed on these represen-
tations. The results in Table 3 shows that LPR and RLPR
are more accurate than Subsampled-Cartesian results. The
mean and standard-deviation of pitch and yaw angles’ er-
rors are lower in RLPR than those in LPR. Note that roll
angle do not change so much through the whole sequence
(Fig. 9 depicts ground-truth of pitch, yaw and roll angles in
radians). Hence, the mean error of roll estimation, though
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Table 4 Mean and standard-deviation of errors in rotation matrices
[25] in radians of sequence-2 in set-2 [31]

Rotation matrix

Mean Std

GTOF 2.46E-04 1.41E-04

Sub. cart. 4.77E-03 7.60E-03

LPR 2.62E-03 4.04E-03

RLPR 2.15E-03 1.93E-03

lower in LPR than those in RLPR, is not as much signifi-
cant as in the case of pitch and yaw angles. In Table 3, it
can be observed that roll angle from GTOF is in the same
order (E-04) as those from LPR and RLPR, whereas pitch
and yaw angles from GTOF are far more accurate as com-
pared to those from LPR and RLPR. Regarding roll angle
variations, up to our understanding, visually there is no vari-
ation all over the original sequence. Hence, it seems to be an
error introduced in the process of generating ground-truth
values provided by [31]. Estimation of motion parameters
can be ambiguous (e.g., translation on X axis can be incor-
rectly estimated as rotation on Y axis and vice-versa) under
a reduced field of view or with insufficient depth variation
(e.g., [36, 37]) because different motions can induce sim-
ilar flow vectors. Therefore, another way to evaluate these
three orientations is just by comparing the rotation matrices
directly instead of comparing individual orientations [25].
Table 4 provides the error values with rotation matrices.
These values also reproduce the same conclusion that RLPR
is better than LPR and Subsampled-Caretesian. Overall it
can be concluded that orientations estimated using optical
flow from RLPR is more accurate than those estimated from
LPR. Additionally, results are better than those obtained by
the Subsampled-Cartesian representation that contains the
same number of data points.

6 Conclusion

The current work proposes to change image sampling, re-
sulting in a novel space variant representation. This vali-
dates the initial intuition that more accurate results can be
obtained if we change the philosophy of oversapling fovea
region to the higher sampling in peripheral region. This
improvement is useful when forward faced on-board vi-
sion systems are considered, where translation in the opti-
cal axis is the predominant motion (e.g., mobile robotics,
driver assistance). The proposed RLP representation is eval-
uated and compared with classical LP by computing optical
flow on them. The rectangularized representations of space-
variant sampling may introduce systematic errors in flow
fields when traditional optical flow approaches are used on

them. Hence we can say that there is a need of research in
variational optical flow methods to be applied directly on
the space-variant sampled images. The experimental analy-
sis is performed on both synthetic and real video sequences.
Additionally, results from the estimation of egomotion are
provided as an illustrative application. Experimental results
shows that RLPR is better than LPR in navigational applica-
tions and is also better than the corresponding Subsampled-
Cartesian representation.
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