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Abstract: An efficient incremental algorithm for integrating overlapping, registered range

images acquired from different points of view is presented. Every new range image, which is

represented by a 3D triangular mesh, is merged with a second triangular mesh which represents

the current reconstructed model. The merging process consists of three stages. The first stage

finds the area of overlap between the new 3D mesh and the reconstructed model. Triangles that

belong to the area of overlap of the coarsest mesh are removed. In the second stage, the

boundary created after removing the previous triangles, along with its adjacent boundary from

the unaltered (fine) mesh, are projected to a reference plane and triangulated with a 2D

constrained Delaunay algorithm. Finally, the last stage projects the previous 2D mesh back to

the 3D space, leading to a 3D mesh that sews the new range image to the current reconstructed

model. The algorithm is suitable for integrating range images acquired with different spatial

resolutions and containing one or more separate objects.
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1 INTRODUCTION

Range images are gaining popularity in computer

vision and robotics owing to the variety of applica-

tions that can benefit from them, including world

modelling, reverse engineering and object segmenta-

tion or recognition. Many of these applications

require the automatic reconstruction of 3D objects

present in a scene. In order to solve this problem, it is

necessary to acquire several range images from

different points of view and integrate them into a

single 3D model.

Assuming that frame transformations among the

different views can be reliably computed by applying

well-known techniques such as the iterative closest

point (ICP) algorithm1 or scanning mechanisms,2 two

basic processes must be performed to solve the 3D

object reconstruction problem. First, an exploration

process is necessary to determine the positions where

the range sensor must be placed in order that all the

surfaces of the objects present in the scene can be

observed. This issue is known as the next-best-view

problem (e.g. Hilton3 and Bottino and Laurentini4).

Secondly, a multiview integration process must

combine the set of range images acquired from the

different viewpoints with the aim of generating a

consistent 3D model of the object or objects present

in the explored scene. Alternatively, the integration

process can be performed simultaneously with the

registration as it is presented by Tubic et al.5

If a single range sensor is available and it is

mounted, for instance, on a robot that changes the

sensor’s position over time, the integration process

has some important constraints that must be

accounted for. The first one is that range images

will be acquired sequentially. This implies that the
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integration process must be incremental, being able

to update a current reconstructed model as new

images are obtained. The second constraint is that the

various range images being integrated may have

different spatial resolutions, depending on the dis-

tance from the sensor to the objects of interest and

the angle with which they are observed. Finally, if the

reconstruction must be done close to real time, the

integration process must be efficient enough not to

introduce a significant time penalty.

The different techniques proposed in the literature

for range image integration can be broadly classified

as unstructured or structured methods.

Unstructured integration methods generate a

polygonal surface from an arbitrary set of unorga-

nized points obtained from the available views.

Following this approach, Boissonnat6 presented an

algorithm for integrating a set of 3D points

corresponding to different views of a single object

by applying a 3D Delaunay triangulation algorithm.

Edelsbrunner and Mücke7 proposed alpha shapes

as a generalization of the convex hull of a point set.

Hoppe8 presented a complex algorithm that takes as

input an unorganized set of points and produces as

output a non-redundant surface model. To do so,

various assumptions about the data points are made

(uniform data point density, same accuracy for all

the data, and feasibility of estimating the k nearest

surface neighbours of any point p), which are quite

restrictive given the above-mentioned constraints

of the problem. Another unstructured method for

reconstructing surface models by integrating a cloud

of 3D points was presented by Bajaj et al.9 This

proposal requires a dense uniform sampling of the

object to be reconstructed and generates the inte-

grated model by means of regular triangulations and

weighted alpha shapes.

Following a different approach, Liao and

Medioni10 extended the principle of 2D snakes to

3D deformable models in order to approximate a 3D

surface from a cloud of points. This technique starts

by deforming an initial closed surface (e.g. closed

cylinder, sphere) trying to bring it as closely as

possible to the 3D input data points. The deforma-

tion process is carried out by minimizing an energy

functional that considers an attraction force field

around each original data point—each point pulls

the initial surface toward itself. This approach

cannot handle multiple objects or objects with deep

cavities.

The integration of unstructured data points was

tackled at the same time as the registration of

multiple range images in Masuda.11 In that work,

integration and registration are alternately iterated

until the input shapes are properly registered to the

integrated shapes. Finally, a mesh model is generated

from the resulting integration by a volume-based

algorithm different from the classical marching cubes.

A common problem with unstructured integration

methods is that, since their input is a point cloud,

when a new range image must be integrated into the

reconstructed model, all the previously acquired

points must be reconsidered. Therefore, these meth-

ods are not adequate for an incremental update of the

model, since the computational complexity of that

process would grow exponentially. Moreover, the

majority of methods require that the points that

belong to the same surface be uniformly distributed,

complicating or even preventing the integration of

range images of different resolutions. Finally, those

methods assume that the cloud of points belongs to a

single object. However, if a complex scene is to be

reconstructed, the acquired range images will contain

surfaces belonging to separate objects.

In contrast, structured integration methods assume

that the data points that belong to the range images

to be merged have been structured in some way prior

to the integration process, such as in a triangular

mesh. If the range images are originally represented

by bidimensional arrays of 3D points, a triangular

mesh can be trivially created by linking adjacent

points along rows, columns and diagonals. More

involved techniques aimed at producing triangular

meshes that adapt to the shapes present in the given

range images can also be applied.

By taking advantage of the complementary struc-

tural information, the performance of the integration

process can dramatically improve with respect to

unstructured methods. Moreover, such information

allows useful features related to the surfaces that are

being represented to be computed. For instance, it is

possible to determine efficiently regions of overlap

between the triangular meshes to be integrated, as

well as to identify redundant 3D points contained in

these regions. Those points can be discarded or they

may help to improve the accuracy with which the

overlapped regions are represented in the integrated

model. Another important advantage of structured

methods is that the range images to be integrated

can be locally merged by only considering their
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overlapped regions. This may have an important

impact on the performance of the whole process.

Following this second approach, Soucy and

Laurendeau12 presented a structured integration

technique that decomposes the input range images

into subsets of canonic views. A canonic view is an

area in which several input range images partially or

fully overlap. A specific reference plane is then

defined for each canonic view. All the points of the

input range images that belong to every canonic view

are first projected onto the reference plane associated

with that view, and then triangulated with a 2D

Delaunay algorithm. The resulting meshes are finally

combined to form the complete integrated model.

This algorithm is static in the sense that all the range

images are necessary in order to be able to compute

the overlapping subsets. This problem is overcome by

Soucy and Laurendeau13 by allowing the incremental

integration of new range images. However, all the

points contained in the area of overlap between the

range images involved in the integration process are

retriangulated, with a subsequent time penalty in the

case of large overlapped areas.

Another well-known structured integration techni-

que was presented by Turk and Levoy.14 In this case,

the integration process is directly carried out in the

3D space. This process begins by converting two

meshes that may have a considerable overlap into a

pair of meshes that barely overlap along portions of

their boundaries. This is done by simultaneously

eroding the overlapped boundaries of each mesh.

Next, the meshes are ‘zippered’ together by means of

a constrained 3D triangulation process. Finally, each

vertex of the zippered mesh is moved to a consensus

position obtained by taking an average of nearby

positions from each of the original range images. This

zippering technique works satisfactorily for relatively

smooth surfaces, but it has been shown to fail in

regions of high curvature. Furthermore, it was

designed to reconstruct single objects from dense

range images of similar resolution.

A differently structured method for merging a new

range image represented by a triangular mesh with a

second mesh that represents the reconstructed object

was proposed by Pito.15 First, triangles that approx-

imate the same surface patch on both meshes are

identified. From those triangles, only the ones

acquired with the largest confidence are kept. The

removal of low confidence triangles produces gaps

between adjacent patches that are subsequently

retriangulated, making sure that each new triangle

does not cause the mesh to self-intersect. This

technique is also carried out in the 3D space. In an

extension to this work presented by Ju et al.,16 range

images are decomposed into subset patches that are

then evaluated according to a confidence value.

Redundant patches are removed, while winning

patches are merged to complete a single mesh.

A regular 3D mesh reconstruction approach that

integrates different views by mapping them on a 2D

plane is presented by Khan et al.17 The authors

present a prototype of a system to generate 3D mesh

models with a 3D scanner and a turntable. This

approach exploits not only the data point structure,

but also the way in which they were scanned (i.e. the

turntable). Therefore, a plane wrapping a cylindrical

representation is used to depict the different views.

In the present paper, a new structured method for

efficiently integrating range images represented by 3D

triangular meshes is presented. This technique can

integrate range images of different resolutions and

can reconstruct single objects as well as separate

multiple objects. The proposed algorithm consists of

three stages. Given a 3D triangular mesh representing

a new range image, the first stage finds out the area of

overlap between the new 3D mesh and the recon-

structed model, which is also represented by a

triangular mesh. The mesh whose overlapped trian-

gles have the largest average perimeter will be

referred to as the coarse mesh. The triangles

belonging to the area of overlap of the coarse mesh

are then removed.

In the second stage, the boundary created after

removing the previous triangles, along with its

adjacent boundary from the unaltered mesh, are

projected onto a reference plane and triangulated

with a 2D constrained Delaunay algorithm.18 The

last stage projects the previous 2D triangular mesh

back to the 3D space. This 3D mesh allows the new

range image to be sewn to the current reconstructed

model.

Although the overall scheme of the proposed

technique resembles the zippering technique, it has

two major differences that make the proposed

technique more adequate for the efficient integration

of multiresolution range images describing single or

multiple objects. The first difference is in the

detection of the region of overlap between the new

mesh and the current reconstructed model. In Turk

and Levoy,14 this area is constituted by those
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triangles from a mesh whose vertices are closer than a

certain experimental threshold to the triangles of the

other mesh. This heuristic is exclusively based on

point-to-triangle distances, disregarding the orienta-

tion of the surfaces. This may lead to interior vertices

from one mesh being erroneously considered to

overlap with boundary triangles of the other mesh

just because their distance is lower than the given

threshold. This problem can be worsened if both

meshes have different resolutions (Turk and Levoy14

assumed that the triangles of both meshes have

comparable sizes). Instead, the proposed technique is

based on a more robust process that determines the

inclusion of vertices of a mesh into volume elements

(polytopes) associated with the triangles of the other

mesh. Those polytopes are defined by taking the

surface orientation and curvature into account.

The second basic difference from Turk and

Levoy14 is in the way the two meshes are merged.

In Turk and Levoy,14 the sewing is performed by

applying an ad hoc constrained triangulation in the

3D space. New points to be triangulated must be

found by determining all the intersections between

the lines of one of the boundaries and planes

orthogonal to the edges of the other boundary. In

addition to the high computational cost of this

operation, a large number of new points can result

from the process, all of them being included in the

final mesh. Instead, the proposed technique obtains a

sewing triangular mesh in a more straightforward and

robust way, by applying a well-known constrained

Delaunay triangulation in the 2D space, without

addition of new points to the result.

This paper is organized as follows. Section 2

introduces concepts and notation that will be used

throughout the rest of the paper. Section 3 describes

the three stages of the proposed integration algo-

rithm. Section 4 presents experimental results with

real and synthetic range images. Finally, conclusions

and future lines are given in section 5.

2 PRELIMINARY CONCEPTS

2.1 Range images and triangular meshes

Generally, a range image is a rectangular sampling of

the surfaces present in a scene. Its usual representa-

tion is a 2D array R, where each array element R(r,

c), r[[0, R) and c[[0, C), is a scalar that represents a

surface point of coordinates: (x, y, z)5{fx(r), fy(c),

fz[R(r, c)]} referred to a local coordinate system

associated with the range sensor. The definition of

fx, fy and fz depends on the properties of the actual

range sensor being used. In general, R(r, c) can be

considered to be the distance between a surface point

and a given reference plane, which is orthogonal to

the axis of the sensor and placed opposite to it at a

specified distance. Invalid points in the image will be

considered to have the background value b. The

viewing direction D is aligned with the Z axis of

the local reference frame, and it is pointing towards

the scene. Thus, vector D can be defined as D5(0, 0,

21).

A 3D triangular mesh is a piecewise linear surface

consisting of triangular faces connected along their

edges. Formally, a 3D triangular mesh M is a set {V,

T}, where V5{v1,…,vm}, vi[R3, is a set of vertex

positions that define the shape of the mesh in R3, and

T is a description of the mesh topology. Each vertex

is defined by three coordinates (x, y, z). The topology

of the triangular mesh is defined by a set of polygonal

patches. A polygonal patch is associated with every

vertex and keeps the identifier of that vertex as well as

the identifiers of the vertices adjacent to it. The

adjacent vertices are kept in counter-clockwise order

by convention. Figure 1 shows an example of a 3D

triangular mesh and the three polygonal patches that

contain a certain triangle ABC.

A vertex that belongs to the boundary of a

triangular mesh M, such as vertices J and F in

Fig. 1, will be referred to as an exterior vertex of M.

2.2 Binary space partition trees

In order to locate objects contained in a certain

region of space efficiently, binary space partition

1 3D triangular mesh and polygonal patches associated

with triangle ABC: PatchA5{A, B, C, D, E};

PatchB5{B, C, A, E, F, G, H}; PatchC5{C, B, H, I,

J, K, A}
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(BSP) trees can be used.19 A BSP tree is a binary tree

intended to store the objects contained in a certain

parallelepiped in 3D space (the domain parallele-

piped) aligned with the axes of a reference frame—

this frame is the local frame associated with the

reconstructed 3D model—in such a way that it

is efficient to recover the objects contained in

another (usually smaller) parallelepiped (the query

parallelepiped).

Each node of the BSP (binary) tree is associated

with a parallelepiped, with the root of the tree being

associated with the domain parallelepiped. The

parallelepiped associated with the node at any level

of the tree is split into two equally sized parallelepi-

peds that are assigned to the two children of the node.

The cutting plane at each level may be parallel to the

XY, XZ or YZ planes. Among the possible cutting

planes, the one that produces the most regular

parallelepipeds is chosen at each level. The number

of levels (and thus the resolution of the partition) is

fixed and defined a priori. The parallelepipeds

associated with the leafs of the tree are the ones that

contain the stored objects, and will be referred to as

BSP cells.

Every time a new 3D object (bounding box) is

loaded into a BSP tree, it is added to the BSP cells

that cover the volume of space that the object

occupies. These cells are found by traversing the tree

from its root. If the number of objects stored in any

cell reaches a specified threshold and the maximum

number of levels at that part of the tree has not yet

been reached, that BSP cell is split into two new cells,

and the objects contained in it are redistributed

between the new ones.

Once a set of objects has been loaded into the BSP

tree, a query function will return the objects

contained in the BSP cells that intersect the given

query parallelepiped. Two parallelepipeds intersect if

they share a region of 3D space.

3 INCREMENTAL INTEGRATION OF RANGE

IMAGES

Given a triangular mesh Mi that approximates a new

range image, the objective consists of merging it with

the current reconstructed model M, also represented

by a triangular mesh, generating thus a non-

redundant surface model that becomes the new

current reconstructed model M.

The algorithm consists of three stages (see

Fig. 2). The first stage identifies the overlapped

regions between the two triangular meshes to be

merged (the new range image and the current

reconstructed model) and, by taking these regions

into account, it defines the integration boundaries. In

the second stage, the integration boundaries are

projected onto an integration plane, which is a plane

orthogonal to a projection direction d, computed

by considering the orientation of the triangles that

belong to the overlapped regions found in the

previous stage. The points that constitute the

projected integration boundaries are triangulated

over that 2D space through a constrained

Delaunay algorithm, preserving their connectivity

(polylines defined by the projected integration

boundaries). Finally, the obtained triangulation is

backprojected to the original 3D space. The final

result is a non-redundant triangular mesh that will

be integrated with further range images. The three

stages of the algorithm are described in more detail

below.

2 Illustration of three stages of integration algorithm
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3.1 Overlap detection

Given two 3D triangular meshes, Mi (new mesh) and

M (current reconstructed model), referred to the

same global coordinate frame, this first stage

identifies the triangles of Mi that overlap with

triangles of M, and then removes the triangles that

belong to the coarsest mesh, since they are considered

to provide redundant information.

A triangle Ti of Mi is considered to overlap current

model M if any of the vertices of Ti overlaps with any

of its nearby triangles in M. In order to find out

efficiently the triangles of M located in the neigh-

bourhood of a given vertex of Ti, a BSP tree is used.

At the beginning of the integration process, the

triangles of M are loaded into the BSP tree as follows.

A right prism (a prism whose top and bottom

polygonal faces lie on top of each other, such that

the vertical polygons connecting their sides are

rectangles) is associated with each triangle TM of

M. The right prism of a triangle is computed by

displacing that triangle an offset D upwards and

downwards along the direction of its normal vector.

In order to define the regions of the domain

parallelepiped (see section 2) where each triangle is

inserted (the domain parallelepiped encloses M and

Mi, being aligned with the axes of the reference

frame), axis-aligned boxes bounding the previously

obtained prisms are computed. Each triangle TM is

stored in all the cells of the BSP tree that intersect the

bounding box of the right prism of TM. Figure 3

illustrates the right prism and bounding box corre-

sponding to a certain triangle TM.

Once all the triangles of M have been loaded into

the BSP tree, given the 3D coordinates of a vertex of

Mi as the query parallelepiped (see section 2), the BSP

tree will return the triangles of M close to that vertex.

There are two special cases in which the overlap

between a vertex of Mi and a triangle of M is directly

discarded in considering that they both belong to

separate surfaces: (a) when the distance between the

vertex of Mi and the plane that contains the triangle

of M is above a certain threshold (half the average

length of the edges of the triangle has been

considered), and (b) when the normal vector asso-

ciated with the vertex of Mi has an angle of more than

90 degrees with respect to the normal vector of the

triangle of M. The normal vector associated with a

vertex is obtained by averaging the normal vectors of

the triangles that belong to the polygonal patch

associated with that vertex (polygonal patches are

defined in section 2).

If the previous conditions are not satisfied, the

vertex of Mi will be considered to overlap with the

triangle of M if the former belongs to either the upper

or lower overlap polytopes of that triangle. The

upper overlap polytope of a triangle is defined as the

intersection between the positive half-space sup-

ported by the triangle’s plane and the positive half

spaces supported by three upper overlap planes

associated with the edges of the triangle. Given an

edge E of a triangle T, the upper overlap plane

associated with E is the plane that contains E and is

orthogonal to the plane of the triangle T9 adjacent to

T along E, in the case where such a neighbour exists,

or orthogonal to the plane that contains T if either T9

does not exist or triangles T9 and T form a concave

surface. Conversely, the lower overlap polytope is the

symmetry of the upper overlap polytope with respect

to the plane that contains triangle T.

Figure 4 illustrates the concept of overlap poly-

topes and overlap detection considering a certain

triangle T and a set of vertices. In this example,

vertices A and B are considered to overlap with

triangle T, while vertices C and D do not overlap.

Vertex D does not pass the normal orientation test,

whereas vertex C is outside both the upper and lower

overlap polytopes of T.

The overlap detection process starts by insertion of

all the exterior vertices of Mi in a FIFO queue.

Afterwards, an iterative process removes the vertex V

at the head of the queue and tests it for overlap

against its nearby triangles in M. These triangles are

found from the BSP tree, given the coordinates of V.

If vertex V happens to overlap with any of those

3 Right prism and axis-aligned bounding box asso-

ciated with a certain triangle TM
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triangles from M, the vertices of Mi that belong to V’s

polygonal patch and have not yet been tested for

overlap are enqueued. This iterative process stops

when the queue is empty. In this way, it is not

necessary to test all the vertices of Mi. The triangles

of Mi that contain any overlapped vertex are referred

to as the overlapped triangles of Mi. The triangles of

M that overlap with vertices of Mi are referred to as

the overlapped triangles of M.

The mesh whose overlapped triangles have the

largest average perimeter is referred to as the coarse

mesh, MC, while the other mesh is referred to as the

fine mesh, MF. Before removing the overlapped

triangles of MC, the integration boundaries of MF

are determined. Those boundaries are constituted by

those edges that link the exterior vertices of MF that

overlap with triangles of MC.

Finally, the overlapped triangles of MC are

removed, giving rise to a new mesh M�
C. After this

process, some interior vertices of MC may have

become exterior vertices of M�
C. The edges that link

these new sets of exterior vertices are considered to be

the integration boundaries of M�
C.

Figure 5 shows an example of two overlapped

meshes and the result after eliminating the over-

lapped triangles. Integration boundaries are indicated

by thickened polylines.

3.2 Boundary projection and triangulation

At this stage, the integration boundaries found above

are projected over a reference plane orthogonal to a

projection direction d. Vector d is computed as the

average direction of the normal vectors associated

with those triangles of MF that have some of their

edges belonging to the integration boundaries. Notice

that, since 3D points defining triangular mesh Mi

belong to a range image obtained from viewing

direction D (the last scanned range image that will be

integrated with the current model M) in the worst

case, when all the boundaries of Mi overlap with M,

the projection direction d will almost be the same as

the viewing direction D. In other words, indepen-

dently of the complexity of the surface geometry of

the scanned object there is always a valid projection

direction d.

It is possible that some edges of the projected

polylines that define the integration boundaries of

M�
C intersect some edges of the projected polyline

corresponding to the integration boundaries of MF.

In this case, every edge belonging to the projected

boundaries of M�
C that intersects the projected

boundaries of MF is replaced by the other two edges

of its corresponding triangle. Figure 6 shows an

example where two non-overlapped vertices define an

4 Determination of overlap between vertices of Mi and

triangle T belonging to M; overlap polytopes of T

are darker; points A and B overlap with triangle T

while points C and D do not

5 Top: Overlapped triangular meshes representing new

range image (Mi) to be integrated with current model

M; both meshes have same resolution, although

boundaries of both meshes have coarser triangles due

to oblique orientation of surface with respect to sen-

sor. Bottom: Triangular meshes after eliminating

overlapped triangles of Mi
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edge that intersects the projected boundary of MF. In

this case, edge (A, B) is replaced by edges (A, C) and

(B, C) (i.e. the other edges that define triangle ABC).

This process is applied iteratively until all the

intersections are removed. In this way, it is guaran-

teed that no new vertices are inserted and that the

original topology is preserved.

After all the intersections between the projected

boundary edges have been removed, the points that

define those boundaries are triangulated by means of

a constrained 2D Delaunay algorithm.18 The con-

straints of this triangulation are the edges corre-

sponding to the projected integration boundaries.

The result of the triangulation is a 2D triangular

mesh whose convex hull encloses the projected

boundaries (Fig. 7(top)).

Finally, the exterior edges of the 2D triangulation

that do not correspond to projected integration

boundaries are removed, except for those cases in

which an edge joins a vertex of the integration

boundary of MF with a vertex of the integration

boundary of M�
C. Figure 7 illustrates the previous

triangulation and removal stages.

After a triangular mesh whose exterior edges are

projected integration boundaries has been obtained,

the next stage maps each 2D triangle to the original

3D space.

3.3 Triangle backprojection

In this final stage, the 2D triangular mesh obtained is

mapped back to the original 3D space, in this way

merging meshes MF and M�
C. This stage simply

maintains the topology generated in the 2D projec-

tion. In order to do this, first it is necessary to remove

in the original 3D space those triangles of M�
C that

have been suppressed during the previous boundary

projection stage owing to intersection between

projected boundaries (see Fig. 6). Afterwards, the

2D triangular mesh is backprojected to the 3D space.

Figure 8 shows the result of integrating the two

triangular meshes that have been used as example

throughout these sections.

The above-mentioned stages–boundary projection,

triangulation and backprojection–do not introduce

additional error, as they only perform geometrical

manipulation of the meshes to be integrated.

Although new topologies are created, the spatial

positions of the vertices are not modified. This is

another difference in comparison with most of the

previous approaches, where new vertices are intro-

duced during the integration process.

4 EXPERIMENTAL RESULTS

This section presents the experimental results of the

proposed integration algorithm considering both real

6 Integration boundaries to be triangulated by means

of constrained 2D Delaunay algorithm

7 Top: 2D triangular mesh generated through con-

strained triangulation of projected boundaries.

Bottom: Triangular mesh obtained after removing all

boundary edges that are not integration boundaries

8 Final result obtained after integrating M and Mi: tri-

angular mesh will be integrated with further range

images
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and synthetic multiresolution range images. All CPU

times were measured on a SGI Indigo II with a

175 MHz R10000 processor.

Figure 10 shows the incremental integration of

four synthetic range images approximated by the

triangular meshes shown in Fig. 9. Figure 10(top)

shows the triangular mesh obtained after integration

of the first two range images, with 743 and 629

vertices each. The CPU time to compute the three

stages of the whole integration process was

0.62 s. The resulting triangular mesh contains 1218

vertices; this triangular mesh was integrated with a

third range image that was approximated with a mesh

containing 470 vertices. The result of the integration

is shown in Fig. 10(middle). The CPU time to

compute the integration process was 0.53 s. The

integrated triangular mesh contains 1505 vertices.

Finally, Fig. 10(bottom) shows the result when a

fourth range image, approximated by a triangular

mesh with 521 vertices, is added. This last integration

took 0.69 s.

Range images of the same object approximated

with triangular meshes of different resolutions have

also been generated and integrated. Figure 11 shows

the result of integrating two synthetic range images

represented by triangular meshes of different

resolutions (2976 and 629 vertices, respectively).

Figure 11(left) shows a wireframe model in which

the overlap between the original triangular meshes to

be integrated can be appreciated. Figure 11(right)

shows the triangular mesh (3581 vertices) obtained by

integrating the two given meshes. This final triangular

mesh was obtained in 2.2 s.

Figure 12 shows different stages of the integration

of two synthetic range images approximated with

triangular meshes of 398 and 368 vertices, respec-

tively. The triangular mesh resulting from that

integration contains 684 vertices. The CPU time to

compute the three stages of the integration process

was 0.7 s. The triangular mesh obtained was inte-

grated with a new range image, the latter approxi-

mated with a triangular mesh of 486 vertices. The

result of the integration is shown in Fig. 13(left). The

triangular mesh obtained after the integration process

contains 1063 vertices and was obtained in 0.79 s.

9 Original triangular meshes integrated in Fig. 10;

number of vertices included in every mesh is shown

in brackets; triangular meshes I, II and III are shown

as observed from same point of view

10 Top: Triangular mesh obtained after integrating two

views. Middle: Addition of new view to previous

result. Bottom: Fourth view is integrated with pre-

vious resulting mesh. Latter corresponds to integra-

tion of three preceding meshes
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Finally, a new triangular mesh with 496 vertices was

integrated with the previous one (containing 1063

vertices). The CPU time of the integration process

was 1.1 s (Fig. 13(right)).

Figure 14 shows an example of incremental inte-

gration of two synthetic range images obtained from

a scene that contains two separate objects. The

integrated mesh contains 212 vertices and was

obtained in 0.07 s (Fig. 14(bottom)). The triangular

mesh obtained was integrated with other two range

images from the same scene. Figure 15(left) shows the

triangular mesh obtained after integrating a new

mesh of 131 vertices and the mesh shown in

11 Left: Overlapped triangular meshes to be integrated

(triangular meshes with different resolutions). Right:

Triangular mesh obtained after integration process

12 Top left: Overlap of original triangular meshes to be

integrated. Top right: Generation of integration

boundaries by eliminating overlapped triangles of

Mi. Middle left: 2D triangulation of projected

boundaries. Middle right: Triangular mesh obtained

after removing all boundary edges that are not inte-

gration boundaries. Bottom left: Resulting triangular

mesh obtained after integrating M and Mi. Bottom

right: Rendering of resulting mesh

13 Left: Triangular mesh obtained after incremental

integration of triangular meshes that approximate

three range images. Right: Triangular mesh obtained

after integration of new range image with previous

result

14 Top left: Original meshes to be integrated. Top

right: Integration boundaries obtained after eliminat-

ing overlapped triangles. Middle left: 2D triangular

mesh of integration boundaries. Middle right:

Triangular meshes obtained after removing bound-

ary edges that are not integration boundaries.

Bottom left: Resulting triangular mesh obtained

after integration process (in wireframe). Bottom

right: Rendering of resulting mesh
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Fig. 14(bottom). The CPU time to compute the three

stages of the integration algorithm was 0.11 s. The

triangular mesh of 242 vertices obtained was integrated

with a fourth range image, the latter being approxi-

mated with a triangular mesh of 110 vertices. The

result, shown in Fig. 15(right), is a triangular mesh of

340 vertices, obtained in 0.08 s. Notice that the

proposed technique also produces valid results when

the scene contains more than a single object. As

indicated in Fig. 14(middle), although the constrained

2D Delaunay algorithm generates a single 2D triangu-

lation (i.e. the convex hull), isolated planar meshes are

obtained after removing exterior edges that do not

correspond to projected integration boundaries. These

isolated meshes (Fig. 14(middle left)) integrate the

views corresponding to the different objects.

Finally, Fig. 16 shows the results after integrating

different real range images of a single object down-

loaded from the Stanford 3D scanning repository.

These images have been approximated by triangular

meshes of different resolutions (410, 718 and 413

vertices, respectively). Figure 16(bottom left) shows

the triangular mesh of 746 vertices obtained from the

integration of the first two views. This mesh was

computed in 0.24 s. Figure 16(bottom right) shows

the result when the third view is integrated. This final

mesh contains 897 vertices. The integration process

took 0.46 s. All the above experimental results are

summarized in Table 1.

15 Left: Triangular mesh obtained after integration of

new range image with resulting triangular mesh pre-

sented in Fig. 14(bottom). Right: Triangular mesh

obtained after integrating fourth image

16 Top: Three different real range images approximated

by triangular meshes of different resolutions: num-

ber of vertices shown in brackets. Bottom left:

Triangular mesh obtained after integration of first

two views. Bottom right: Resulting mesh after inte-

gration of third view

Table 1 Summary of experimental results for examples containing single object

Input triangular mesh No. of vertices No. of vertices in the final mesh Total time (s)

Mesh I, Fig. 9 743 1,218 0.62
Mesh II, Fig. 9 629
Mesh (I, II), Fig. 9 1,218 1,505 0.53
Mesh III, Fig. 9 470
Mesh (I, II, III), Fig. 9 1,505 1,817 0.69
Mesh IV, Fig. 9 521
High resolution, Fig. 11 2,976 3,581 2.2
Low resolution, Fig. 11 629
Mesh I, Fig. 12 398 648 0.7
Mesh II, Fig. 12 368
Mesh (I, II), Fig. 12 648 1,063 0.79
Mesh III, Fig. 13 486
Mesh (I, II, III), Fig. 13 1,063 1,415 1.1
Mesh IV, Fig. 13 496
Mesh I, Fig. 16 410 746 0.24
Mesh II, Fig. 16 718
Mesh (I, II), Fig. 16 746 897 0.46
Mesh III, Fig. 16 413
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Zipper, a public version of the algorithm presented

by Turk and Levoy,14 was also tested on the same

examples shown throughout this section. Zipper

produced valid integrated meshes with CPU times

of the same order of magnitude as the proposed

technique for all the examples containing a single

object. However, no triangular mesh was generated

for the example containing two separate objects

(Fig. 15). Zipper was designed to integrate range

images of similar resolution obtained from a single

object.

5 CONCLUSIONS

An efficient incremental algorithm for integrating

overlapped registered range images acquired from

different points of view was presented. Every new

range image, which is represented by a 3D triangular

mesh, is merged with a second triangular mesh that

represents the current reconstructed model. The

merging process consists of three stages.

The first stage finds out the area of overlap between

the new triangular mesh and the reconstructed model.

A BSP tree loaded with all the triangles of the

reconstructed model is used to locate efficiently which

of those triangles are close to the vertices of the new

mesh. Overlap polytopes defined by those triangles

are used to detect the vertices of the new mesh that

overlap with the reconstructed model. The over-

lapped triangles corresponding to the coarsest mesh

are removed.

In the second stage, the boundary created after

removing the previous triangles, along with its

adjacent boundary in the unaltered mesh are pro-

jected onto a reference plane and triangulated with a

2D constrained Delaunay algorithm. The reference

plane is orthogonal to a direction found by averaging

the normal vectors associated with the triangles that

have some of their edges belonging to the integration

boundaries found before. Finally, the last stage

projects the previous 2D mesh back to the 3D space,

leading to a 3D triangular mesh that stitches the new

range image up to the current reconstructed model.

The proposed technique allows the dynamic

integration of new range images as they are acquired.

Therefore, it is suitable for integrating images

obtained by a range sensor that is being moved

over a complex scene. Range images of different

resolutions can be handled owing to the use of

overlap polytopes in the overlap detection stage and

conventional 2D constrained Delaunay triangula-

tions for generating the triangular patches that

produce the final merging. The proposed technique

is more efficient than previous ones thanks to the

use of BSP trees and 2D constrained Delaunay

triangulations. Previous techniques apply more time-

consuming 3D triangulations or triangulate all the

points that belong to the area of overlap between the

new range image and the currently reconstructed

model.

Future work will consist of determining efficient

strategies for smoothing the union between integrated

regions through spatial filters that take into account

the positions of the original points as well as the

shape of the integrated surfaces. Another interesting

research line consists of extending the proposed

algorithm in order to be able to integrate textured

images associated with the given range images.
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