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Speed and Texture: An Empirical Study on
Optical-Flow Accuracy in ADAS Scenarios
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Abstract—Increasing mobility in everyday life has led to the
concern for the safety of automotives and human life. Computer
vision has become a valuable tool for developing driver assistance
applications that target such a concern. Many such vision-based
assisting systems rely on motion estimation, where optical flow has
shown its potential. A variational formulation of optical flow that
achieves a dense flow field involves a data term and regularization
terms. Depending on the image sequence, the regularization has
to appropriately be weighted for better accuracy of the flow field.
Because a vehicle can be driven in different kinds of environments,
roads, and speeds, optical-flow estimation has to be accurately
computed in all such scenarios. In this paper, we first present
the polar representation of optical flow, which is quite suitable
for driving scenarios due to the possibility that it offers to in-
dependently update regularization factors in different directional
components. Then, we study the influence of vehicle speed and
scene texture on optical-flow accuracy. Furthermore, we analyze
the relationships of these specific characteristics on a driving
scenario (vehicle speed and road texture) with the regularization
weights in optical flow for better accuracy. As required by the
work in this paper, we have generated several synthetic sequences
along with ground-truth flow fields.

Index Terms—Advanced driver assistance systems (ADASs), op-
tical flow, regularization parameters, road texture, vehicle speed.

I. INTRODUCTION

THE developments in computer vision and computing sys-
tems have drawn the interest of the automotive indus-

try to make use of them toward advanced driver assistance
systems (ADASs). ADASs include lane departure warning,
collision avoidance, parking assistance, and autonomous nav-
igation (e.g., see [1] and [2]). These systems involve tasks
such as egomotion estimation, moving-object detection, and
3-D reconstruction. One of the well-known tools for estimating
motion that can be used in many of the aforementioned tasks
is the optical flow. Optical flow is a displacement vector field
of patterns between two images. In a driving scenario, optical
flow is estimated between successive video frames captured by
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a camera that is mounted on a vehicle. The seminal methods
of estimating optical flow were proposed in 1981 in [3] and
[4]. The literature shows that there have been several attempts
to improve optical-flow accuracy, with increased interest in
recent years, particularly on variational approaches that typ-
ically involve data and regularization terms. The balancing
between the regularization and data terms has to be tuned to
get better flow fields. Almost all the state-of-the-art approaches
empirically select this weight for a fixed set of image sets used
for evaluation.

In the ADAS domain, it can happen that the vehicle is driven
in different environments (e.g., urban, highway, and country-
side) [5] with different speeds and different road textures,
making it difficult to achieve the same optical-flow accuracy all
over the vehicle’s trajectory; in turn, it reduces the confidence
and effectiveness of ADAS applications. It is very important
to adjust the regularization weight based on the environment
where the vehicle is being driven. This motivates us in this
paper to analyze the effect of some specific properties of the
driving environment on the optical-flow accuracy. There are
many factors that affect the flow accuracy, such as illumination,
occlusions, specularity, texture, structure, and large displace-
ments. In particular, in this paper, we study the influence of
onboard vision system speed and also the road texture on
optical-flow accuracy.

As motivated by the natural way of representing a vector
in terms of polar coordinates, it is also demonstrated that this
representation exhibits statistical independence on image se-
quences of ADAS scenarios in this paper. The polar-represented
optical-flow estimation [6] involves the following two regular-
ization terms: 1) orientation and 2) magnitude. This formulation
gives the advantage of independently tuning each term, unlike
in Cartesian-represented optical-flow estimation. Fig. 1 shows
image frames of different speeds and textures and the estimated
flow fields based on [6]. The error values [average angular
error (AAE) and average endpoint error (EPE)] for the same
flow fields are given in Table I, where S1 corresponds to the
sequence with the lowest speed, whereas S4 corresponds to
the sequence with the highest speed. On the other hand, T1
corresponds to the lowest texture contrast, and T3 corresponds
to the highest texture contrast. An analysis of errors for a fixed
set of regularization weights and different speeds and textures
in both Fig. 1 and Table I reveals the importance of regular-
ization weights for an accurate flow-field estimation. In this
paper, we analyze the variation in accuracy of the optical flow
by varying the weights of regularization on several sequences
of different speeds and road textures. First, the analysis of the
influence of just speed is performed. Second, different textures
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Fig. 1. Image frames of different textures and speeds, and computed optical
flows for different regularization weights.

are analyzed. Finally, the analysis that combines both speed and
textural properties is done.

This empirical analysis requires the following image se-
quences: 1) to analyze the influence of speed, having sequences
of different speeds with the same geometrical structure and
texture is needed and 2) to analyze the influence of texture,
having sequences with the same geometrical scene structure
but with a different texture is needed. It is impossible to have
such real-life scenarios and also the corresponding ground-truth
optical flow. In this paper, several synthetic sequences of an

TABLE I
AAEs AND EPEs FOR FIXED REGULARIZATION WEIGHTS FOR

SEQUENCES OF DIFFERENT TEXTURES AND SPEEDS

(FLOW FIELDS ARE SHOWN IN FIG. 1)

urban scenario for the required cases are rendered using 3-D
models that were generated with the graphic editor Maya1; the
corresponding ground-truth flow fields are also generated using
a ray-tracing technique.

In summary, the contributions of this paper are listed as
follows.

1) The statistical independence of polar representation is
exploited on ADAS scenarios.

2) The dependency of regularization weights (both for mag-
nitude and orientation) are analyzed for different speeds
of the onboard vehicle camera, for different road textures,
and for different combinations of both speed and texture
together.

3) Several synthetic sequences of driving scenarios for dif-
ferent speeds and different road textures are generated
with the corresponding ground-truth flow fields.

This paper is organized as follows. The next section presents
the related work. Then, Section III provides a brief compar-
ative study of the use of polar representation with respect
to the Cartesian in the context of ADAS applications. Next,
Section IV presents the polar optical-flow formulation used
in this paper. The texture measures needed to evaluate the
different scenarios are presented in Section V, whereas the
framework used to generate scenes is detailed in Section VI.
Experimental results, discussions, and conclusions are given in
Sections VII–IX, respectively.

II. RELATED WORK

Optical-flow techniques can be classified as global and local
approaches. Global approaches produce dense flow fields us-
ing variational energy minimization, whereas local approaches
produce sparse flow fields using a least squares criterion over
small neighborhoods. During the last three decades, several
approaches on optical-flow estimation have been proposed [7]
to improve accuracy and efficiency. Hence, there is a need
to evaluate this large amount of contributions. Performance
evaluation of different methods on complex data sets have
been presented in [8]–[11]. Recently, Baker et al. [12] have
proposed benchmarking sequences with ground-truth data and
a methodology for evaluation.

The denseness of global optical-flow approaches make them
useful in many applications. Typically, global optical-flow
estimation (e.g., see [13] and [14]) that is formulated as a
variational energy minimization consists of a data term that
matches some properties between images and a smoothness
term, also called a regularization term, that makes the problem

1www.autodesk.com/maya
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well posed. Attempts have been made to improve on data terms,
regularization, and energy minimization. Improvements in data
terms are made by robust penalizing functions [15] and by
adopting higher order terms [16]. Developments in regulariza-
tion terms are focused on preserving motion discontinuities
[17] and using the temporal coherence [18]. A method that
combines the advantages of both local and global approaches
is proposed in [16]. Recently, Sun et al. [19] have explored
concepts such as preprocessing, coarse-to-fine warping, grad-
uated nonconvexity, interpolation, derivatives, robustness of
penalty functions, and median filtering, and then, their influence
on optical-flow accuracy is revealed. Using the best of the
explored concepts and weighted nonlocal median filtering, an
improved model is proposed in [19]. A multiframe optical-flow
estimation technique based on the temporal coherence of flow
vectors across image frames is proposed in [20]. Motivated
by the natural representation of a vector and the statistical
independence of the polar coordinates to the Cartesian coor-
dinates, recently, an optical-flow estimation approach based on
polar representation has been proposed in [6]. A top-performing
method that intelligently preserves small and large motion in a
coarse-to-fine approach is proposed in [21]. In summary, there
has been increased interest on optical-flow approaches in the
last few years, which can be appreciated on the number of
publications and released code [11].

We can notice that, in almost all optical-flow methods, the
weights for regularization are empirically chosen. There are
very few attempts in this direction to automatically select such
parameters. Krajsek et al. [22] present a Bayesian model that
automatically weighs different data terms and a regulariza-
tion term. This model that estimates optical flow and several
parameters together is very complex to minimize. Recently,
Zimmer et al. [23] has proposed to automatically select the
regularization weight based on the optimal prediction principle.
In their work, the optimal regularization weight is obtained
as the one that can produce a flow field with which the next
frame in a sequence is best predicted. Inherently, this approach
involves a brute-force method to select the optimal weight
based on the average data constancy error, and hence, it is
computationally expensive. On the other hand, there is an
attempt [24] to use several different optical-flow methods for
a sequence by selecting the best suitable method per pair of
frames or per pixel.

In a preliminary work [25], we present a study on optical-
flow accuracy for different speeds of the vehicle. In that work,
the size of the video sequence is very small, and the frames
considered for speed analysis involve a different geometrical
scene structure. In this paper, in particular, the study on speed
is improved by adding longer sequences. In addition, both
the study of texture and the combined study on speed and
texture have been performed on sequences that include complex
scenarios.

III. POLAR VERSUS CARTESIAN REPRESENTATION

OF FLOW VECTORS

The most commonly used representation in optical-flow esti-
mation is the Cartesian coordinate system. However, represent-

Fig. 2. Joint histograms of flow derivatives in the Cartesian and polar coor-
dinates of an estimated flow field in a synthetic sequence of an urban road
scenario. On top of each plot, the MI value is depicted.

ing a vector in terms of its magnitude and orientation is a natural
way that is referred to as polar representation. As presented
in [6], the analysis of spatial derivatives distribution of a flow
field represented in polar shows a significant statistical differ-
ence among its components compared to the components of
a Cartesian representation. Furthermore, the polar components
show higher statistical independence compared to the Cartesian
components when the mutual information (MI) between the
derivatives of flow components in the respective representations
are analyzed, as shown in [6] and [26].

A similar analysis is shown in Fig. 2. This analysis is per-
formed on the estimated optical-flow field from a pair of images
in an urban driving scenario (shown in Fig. 3, left column).
Fig. 2 shows the joint histograms of flow derivatives in both the
Cartesian and polar coordinate systems. The MI between the
coordinate components that were computed using these joint
histograms are depicted on top of each plot in Fig. 2. The lower
the values of MI, the higher the statistical independence. As
shown in Fig. 2, the representation of flow field in polar is more
independent than the Cartesian system. A similar analysis on
the ground-truth flow field between the same pair of images has
shown zero MI (in the cases in Fig. 2, bottom left and bottom
right), for polar coordinates. For the Cartesian coordinates (in
the cases in Fig. 2, top left and top right), the MI values
are 0.27082 and 0.50335, respectively, when the ground-truth
flow field is considered. This shows that, in the ideal case of
translational motion, polar coordinates are mutually exclusive
(totally independent).

A polar representation of flow vectors for optical-flow esti-
mation is proposed in [6], and its implications are studied. It
is shown that polar-represented optical flow performs almost
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Fig. 3. Images from sequences of different speeds. Top left: First frame
common for all sequences. Top right: Color map used to show the flow fields.
Left column: Second frame from the sequences of different speeds in increasing
order (second and third rows). Right column: Ground-truth flow fields between
the respective first and second frames.

similar to the state-of-the-art Cartesian coordinates represented
optical-flow estimation on traditional image data sets. Fur-
thermore, it is shown that, for specular and fluid flow image
sets, polar representation adds the advantage by independently
allowing regularization in either coordinate component. In the
vehicle-driving scenario, the majority of the motion is transla-
tion. The expected flow field in such a scenario is diverging, and
the variation in magnitude is higher compared to the variation
in orientation. In such a motion scenario, the polar optical
flow becomes convenient. This paper exploits the possibility of
independent tuning of regularization terms.

IV. OVERVIEW OF THE POLAR OPTICAL FLOW

A typical variational formulation of the optical-flow energy
function using the Cartesian representation looks like

E(u, v) =

∫ ∫
Ω

⎧⎨
⎩(I(x+ u, y + v, t+ 1)− I(x, y, t))︸ ︷︷ ︸

DataTerm

+ α
(
|∇u1|2 + |∇u2|2

)
︸ ︷︷ ︸

Regularization

⎫⎪⎬
⎪⎭ dx dy, (1)

which contains a data and a regularization term. Here, I(x, y, t)
is the pixel intensity value at (x, y) at time t, α is the reg-
ularization weight, and (u, v) is the flow-field vector to be

estimated using Euler–Lagrange equations [14] or alternative
methods [13].

This section presents a brief description of the polar optical-
flow formulation proposed in [6]. According to that work, the
flow vector at a pixel (x, y) can be represented in terms of polar
coordinates as

flow(x, y) = (m(x, y), θ(x, y)) (2)

where m is the magnitude, and θ is the orientation at (x, y). The
energy formulation using the polar representation allows us to
separate the regularization terms as follows:

E (θ(x, y),m(x, y))

=

∫ ∫
Ω

{ψ (I(x+m cos θ, y +m sin θ, t+ 1)− I(x, y, t))

+ αθψθ (ρθ(θ)) + αmψm (ρm(m))} dx dy, (3)

where ψ is a robust penalty function for the data term, and
ψθ and ψm are robust penalty functions, respectively, for the
orientation and magnitude components’ regularization (see [6]
for more details). Similarly, αθ and αm are regularization
weights, and ρθ and ρm are differential operators (in a simpler
case, the first derivative). All these ρ∗, ψ∗, and α∗ can be varied,
depending on the image sequences or application of interest.

To avoid the difficulty of m being negative, the following
equivalence relation is defined over values of m and θ:

(m, θ) ∼
{
(m, θ) if m > 0
(−m, θ + π) if m < 0.

(4)

Due to the periodic nature of θ, the orientation is expressed
in terms of two parameters as

s(x, y) = sin θ(x, y)

c(x, y) = cos θ(x, y) (5)

where the constraint s2 + c2 = 1 is called the coherence con-
straint, which ensures proper representation of orientation.

Using the Lagrange multiplier λ and assuming that it as a pre-
determined parameter, the energy function can be formulated to
minimize three parameters (c, s,m) as

E(c, s,m)

=

∫ ∫
Ω

{
λ(s2 + c2 − 1)2

+ ψ (I(x+mc, y +ms, t+ 1)− I(x, y, t))

+ αθψθ (ρθ(c), ρθ(s))+αmψm (ρm(m))} dx dy,

(6)

where λ is a pixelwise predetermined parameter that is updated
every iteration as λ = e(s

2+c2−1)2 using the previous itera-
tion values of c and s. Equation (6) can be minimized using
Euler–Lagrange equations.
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V. TEXTURE MEASURES

To study the effect of texture on optical-flow accuracy, it is
necessary to quantify the texture property. There are several
ways of measuring the texture content of a given sequence
[27]; in this paper, three of the most widely used statistical
texture metrics, i.e., contrast, correlation, and homogeneity,
are considered. These metric values are computed over a co-
occurrence matrix of gray values of images [28] and are
correlated with the optical-flow error measures. The texture
metrics computed over the co-occurrence matrix, which is also
called normalized gray-level co-occurrence matrix (GLCM) of
an image, are defined as

Contrast =

Ng−1∑
n=0

n2

⎧⎨
⎩

Ng∑
i=1

Ng∑
j=1

p(i, j)

⎫⎬
⎭ ; |i− j| = n

(7)

Correlation =

∑Ng

i=1

∑Ng

j=1(ij)p(i, j)− μxμy

σxσy
(8)

Homogeneity =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 + |i− j| (9)

where p(i, j) is the (i, j)th entry in the normalized GLCM, Ng

is the number of distinct gray levels in the quantized image, and
μx, μy , σx, and σy are the means and standard deviations of px
and py: px(i) =

∑Ng

j=1 p(i, j), and py(j) =
∑Ng

i=1 p(i, j).

VI. SYNTHETIC SEQUENCE GENERATION FRAMEWORK

To analyze the influence of speed on optical-flow accuracy,
we need to have image sequences of the same scene, but with
the onboard vision system moving with different speeds on
exactly the same trajectory. Similarly, to analyze the impact
of texture, we need image sequences of the same scene (i.e.,
surrounding scene structure) but with just different textures. In
reality, it is impossible to have such scenarios and to gener-
ate ground-truth optical flow. Although it is possible to have
such sequences in a controlled laboratory environment, there
does not exist any sensor to generate ground-truth flow fields.
The only way to have such scenarios is to build virtual 3-D
models and use them in the aforementioned setup (speed and
texture). In fact, there are several data sets available with
ground-truth in the literature (e.g., [12], [29], and [30]). In
[12], different synthetic and real data sets for general motion
scenarios with the ground truth are presented, whereas in [29],
many synthetic sequences with the ground truth for ADAS
scenarios are presented. The work presented in [30] provides
synthetic sequences of varied complexities that were created
using the open movie Sintel as a benchmark in optical-flow
research. Recently, [31] has proposed a data set (KITTI) of real
sequences with ground-truth flow in ADAS scenarios. Although
KITTI has real sequences of ADAS scenarios, it does not
contain sequences for studying the influence of speed/texture.
In summary, none of the available data sets are suitable for the
study proposed in this paper. Mac Aodha et al. in [24] presented

Fig. 4. Top left, top right, and bottom left: Frames with different texture from
different sequences. Bottom right: Ground-truth flow field for all the pairs of
images on the top left, top right, and bottom left. All of them have the same
scene geometry and same speed, but with different textures.

a framework for generating synthetic data sets, which is used
here as detailed in the following.

In this paper, we build a synthetic 3-D urban scenario that
consists of a straight road and buildings around with appropriate
texture; it is developed using Maya. A camera that is assumed
to be fixed in a vehicle moves along the road in the model,
and images are rendered for different speeds of the vehicle
along the road. Fig. 3 shows generated synthetic frames and the
corresponding ground-truth flow fields. On the top left is the
first image, which is common to all the sequences of different
speeds. The color map on the top right is used to represent
the flow fields in this paper. On the second row to the left is the
second image in the sequence, and on the second row to the
right is the ground-truth flow between the images on the top left
and the second row to the left. On the bottom left is the second
image of another sequence of higher speed. On the bottom
right is the ground-truth flow between images on the top left
and bottom left. Ground-truth optical-flow values are computed
using a ray-tracing technique directly over the 3-D synthetic
models, considering the camera position in consecutive frames
[24]. The maximum displacement in lower speed sequences is
8.31 pixels, and it is 33.67 pixels in higher speed sequences.

In ADAS scenarios, the road surface covers a major part in
the images taken through a vehicle’s camera. The flow vectors
computed from this surface are more reliable, because there
could be inaccuracies due to occlusions and specularities in the
roadside structures. To analyze texture influence, in particular,
we are changing only the texture of the road surface. Hence, for
a given speed, several sequences with different road textures
are rendered. For example, Fig. 4 shows the images with three
different textures on the road surface. On the bottom right is the
ground-truth flow field for all the three image pairs, i.e., top left,
top right, and bottom left, with their corresponding next ones.
Note that, in this case, the same ground truth is valid for all the
sequences with different textures, because the scene geometry
is exactly the same in all of them. All the flow fields in Figs. 3
and 4 are diverging, because the vehicle is moving straight on
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Fig. 5. Top: Two different image frames from a sequence with independently
moving vehicles and different egomotion. Bottom: Ground-truth flow fields
between the top frames and to their next ones in the sequence.

a road. In addition to these sequence sets, which are simple
in motion, we have created another set of complex sequences
for different speeds and textures similar to the previous set of
sequences. The new complex sequences contain two moving
vehicles: one vehicle moves along the road and comes toward
the onboard camera vehicle, and the other vehicle comes from
a cross road toward the onboard camera vehicle. The new
sequences also contain changes in yaw and pitch angles during
the vehicle’s trajectory. The yaw is 0.25◦ to the left/right, and
the pitch is 0.25◦ to the up/down. Two of the image frames
from this new sequence and the ground-truth optical flows with
their next image frames are shown in Fig. 5. All the rendered
images are of a resolution of 480 × 640 pixels, and the camera
focal length is 35 mm. All this data set (i.e., rendered frames
for different video sequences and corresponding ground-truth
flows) is available through our website.2

VII. EXPERIMENTAL ANALYSIS

This section presents the empirical study of the optical-flow
accuracy of scenes, where the following conditions hold: 1) the
camera moves at different speeds; 2) the texture of the scene
changes; and 3) both speed and texture changes are considered
together. First, we perform the study for all these three cases
on a set of simple sequences, where there is no complexity, and
the vehicle’s camera moves straight on a road with different
speeds and with different road textures. Such a simple sequence
enables us to easily analyze the influence of speed and textures.
Then, we also present the study of the influence of speed and
texture together with another set of sequences that has complex
egomotion.

A. Analysis for Speed

Following the framework presented in Section VI, we have
generated four sequences of different speeds with an incremen-
tal translation of 0.25, 0.5, 0.75, and 1 cm along the optical

2http://www.cvc.uab.es/adas

Fig. 6. RoIs used to calculate the error measures. Left: Speed analysis. Right:
Texture, and speed together with texture analysis.

Fig. 7. Three-dimensional plot of the AAEs from S1 for varying αθ and αm

values.

axis of the vehicle camera in a Maya model with a working
unit as centimeter. Let us call these sequences S1, S2, S3,
and S4 in increasing order of speed. The ground-truth optical
flows for these sequences are also generated. The scene and
texture of all these sequences are shown in Fig. 3. The first
aim is to study optical-flow accuracy for the change in speed
and to find its relationship with respect to the regularization
parameters in the optical-flow formulation. We use the polar
optical flow presented in Section IV, because this formulation
provides the possibility of separately tuning different regular-
ization parameters, which is an attractive feature in the ADAS
domain. Furthermore, it involves two regularization terms that
allow an independent study of their influence. Initially, ex-
perimentation is performed to find the optimal range for the
regularization weights. It consists of computing optical flow
on a pair of images from one of the sequences for a wide
range of weights of both regularization terms. Based on this
experiment, it is determined that the following range of values
for experimentation is sufficient: 1, 2.5, 5, 10, 20, 30, . . ., 120.
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Fig. 8. Three-dimensional plot of the AAEs of all sequences for varying αθ

and αm values.

Further, for analysis of the influence of speed, it is not good
to have an equal number of frames in all of the sequences
of different speeds. Because each sequence has a different
displacement per frame, having an equal number of frames in
all of them will result in having the vehicle camera move dif-
ferent distances and ending up processing different sequences.
Because there is a different scene geometry with different
buildings in the 3-D model, the nth frame in S1 will have a
different scene geometry from the nth frame in S2, S3, and S4.
Because the scene geometry also affects optical-flow accuracy,
in this experiment, we have generated sequences of different
speeds, but the vehicle camera travels a constant distance in
all of them along the camera axis of the 3-D model, hence
generating varying numbers of frames in different sequences.
This way, all the sequences cover exactly the same geometric
scene, but with a different number of frames. Therefore, we
have 40 frames in S1, 20 frames in S2, 13 frames in S3, and 10
frames in S4. The average of error measures of all the frames
in a sequence are considered for analysis. We have considered
both AAE and EPE for analysis. All the errors in this analysis
are computed over a region of interest (RoI) of size 320 × 480
at the center of the flow field. The considered RoI is shown in
Fig. 6, left.

Fig. 7 shows a 3-D representation of the AAE for sequence
S1 for varying values of two regularization weights αθ and
αm. The 3-D error representations of AAEs from all the four
sequences are shown in Fig. 8. The minimum AAEs and the
corresponding regularization weights for all the sequences are
given in Table II. Observing the meshes in Fig. 8 and by ana-
lyzing the minimum AAE values in Table II, we can conclude
that the error in the sequence of lower speed is always higher
than the error in the sequence of higher speed at almost all
combinations of regularization weights. The values of αθ and
αm in Table II reveal that αθ is constant around 2.5 and 5, where
αm values decrease as the speed increases. It can be inferred
that, overall, the AAE decreases with the increase in speed of
the vehicle, αθ has to slightly be increased, and αm should be
tuned with the change in speed of the vehicle.

TABLE II
REGULARIZATION PARAMETER VALUES THAT PRODUCE THE

LOWEST AAEs IN EACH OF THE SEQUENCES

Fig. 9. Three-dimensional plot of the EPEs from S1 for varying αθ and αm

values.

Fig. 10. Three-dimensional plot of the EPEs of all sequences for varying αθ

and αm values.

A similar analysis is also done using the EPE. Fig. 9 shows
the 3-D representation of the EPE for S1 for all combinations
of two regularization weights. The 3-D representations of EPEs
of all four sequences are depicted in Fig. 10. The minimum
EPEs for all four sequences with corresponding regularization
weights are shown in Table III. It is observed in the error
maps in Fig. 10 and Table III that the EPE in a lower speed
sequence is lower than in a sequence of higher speed for any
combination of both regularization weights. In Table III, αθ

increases from a smaller value as the speed increases, whereas



ONKARAPPA AND SAPPA: SPEED AND TEXTURE: EMPIRICAL STUDY ON OPTICAL-FLOW ACCURACY IN ADASs 143

TABLE III
REGULARIZATION PARAMETER VALUES THAT PRODUCE THE

LOWEST EPEs IN EACH OF THE SEQUENCES

TABLE IV
TEXTURE METRICS FOR THE DIFFERENT SEQUENCES

αm keeps constant at around value 60. From the point of
view of EPE, αm has to be kept constant at a higher value,
and αθ should be tuned according to the change in speed of
the vehicle. One interesting conclusion from this first study
is that, depending on the required accuracy (AAE or EPE,
i.e., angular or magnitudinal) needed for a given application,
different tuning of regularization parameters has to be applied.
Furthermore, it is clear that there is a relationship between this
parameter tuning and the current speed of the vehicle.

B. Analysis for Texture

The aim of the work in this section is to analyze the influence
of road texture on optical-flow accuracy and to identify the
way of adjusting the regularization weights for better results.
We have generated several sequences with different road tex-
tures, and some of the images of these sequences are shown
in Fig. 4. The study in this section is performed considering
three sequences with the increasing value of texture contrast.
Hereinafter, they are referred to as T1, T2, and T3. These
sequences are of the same speed as S1, but with different road
textures. The texture metrics are computed over a small RoI
of size 146 × 430 on the road surface. This RoI is shown
in Fig. 6, right. Again, in this section, the polar-represented
optical flow described in Section IV is used. The optical flow
is computed on all image pairs from these sequences, which
were obtained by assuming that the onboard vision system
travels at the same speed. The average error values of all the
flow fields in the same small RoI (where texture metrics were
calculated) in a sequence are computed. We consider both the
AAE and EPE for analysis. Table IV gives the texture metrics
for the sequences. Figs. 11 and 12 show 3-D representations
of AAEs and EPEs, respectively, for three sequences of differ-
ent textures T1, T2, and T3. The minimum AAEs and EPEs
with the corresponding regularization weights are shown in
Tables V and VI, respectively. By observing Figs. 11 and 12
and Tables V and VI, it can easily be confirmed that both
the AAE and EPE measures decrease with the increase in
texture contrast. The regularization weights in Tables V and
VI reveal that both values should increase with the increase in
texture contrast for better results. Similarly, these results can
be correlated with other textural properties such as correlation
and homogeneity in Table IV.

Fig. 11. Three-dimensional plot of the AAEs from three different textured
sequences for varying αθ and αm values.

Fig. 12. Three-dimensional plot of the EPEs from three different textured
sequences for varying αθ and αm values.

TABLE V
REGULARIZATION PARAMETER VALUES WITH THE LOWEST AAEs

TABLE VI
REGULARIZATION PARAMETER VALUES WITH THE LOWEST EPEs

C. Analysis for Both Speed and Texture

Furthermore, we have performed experiments to analyze
the influences of both speed and texture together. We use 12
different sequences of four different speeds and three different
textures. Optical flow is estimated on all the frames in these
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Fig. 13. Error images for the same image pairs shown in Fig. 1 and Table I.
Left: AAEs. Right: EPEs.

sequences, and errors are computed. The error for a particular
sequence is the average of errors in all the flow fields in that se-
quence. Error heat maps are shown in Fig. 13 for the same flow
fields shown in Fig. 1. The errors are calculated on a small RoI
of size 146 × 430 on the road surface, which is the same as in
the previous subsection. Table VII shows the minimum AAEs

TABLE VII
MINIMUM AAEs AND THEIR CORRESPONDING

REGULARIZATION WEIGHTS (αθ, αm)

Fig. 14. Three-dimensional plot of the minimum AAE for all sequences with
different speeds and textures for varying αθ and αm values.

Fig. 15. Three-dimensional plot of αθ that corresponds to the minimum AAE
for all sequences with different speeds and textures.

for 12 different sequences of different speeds and textures. The
regularization weights that correspond to the minimum errors
are also mentioned in brackets in Table VII. Three-dimensional
plots of the minimum AAEs and the corresponding αθ’s and
αm’s are shown in Figs. 14–16, respectively. In Table VII and
Fig. 14, we can notice that the AAE reduces with the increase
in texture contrast, as well as with the increase in speed.
With respect to the AAE, Fig. 15 indicates that αθ has to be
kept small and slightly increase when the speed increases for a
sequence of lower texture, but it has to be higher and to increase
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Fig. 16. Three-dimensional plot of αm that corresponds to the minimum
AAE for all sequences with different speeds and textures.

TABLE VIII
MINIMUM EPEs AND THEIR CORRESPONDING

REGULARIZATION WEIGHTS (αθ, αm)

Fig. 17. Three-dimensional plot of the minimum EPE for all sequences with
different speeds and textures for varying αθ and αm values.

when the speed increases for a sequence of higher texture. In
conclusion, αθ has to increase with the increase in speed and
texture. The 3-D representation in Fig. 16 indicates that αm has
to decrease with the increase in speed and to increase with the
increase in texture.

A similar experiment on all the 12 sequences is performed
considering the EPEs. Table VIII shows the minimum EPEs
and the corresponding regularization weights in brackets.
Figs. 17–19 are the 3-D representations of the minimum EPEs,
αθ’s, and αm’s, respectively. In Table VIII and Fig. 17, we

Fig. 18. Three-dimensional plot of αθ that corresponds to the minimum EPE
for all sequences with different speeds and textures.

Fig. 19. Three-dimensional plot of αm that corresponds to the minimum EPE
for all sequences with different speeds and textures.

can observe that the EPE reduces with the increase in texture
contrast but increases with the increase in speed. Fig. 18 shows
that αθ has to increase with the increase in speed and with the
increase in texture contrast, whereas the 3-D representation in
Fig. 19 indicates that αm has to increase with the increase in
texture but has to decrease with the increase in speed, except
for lower textured sequences (e.g., the sequence with texture
T1 and with speeds S1, S2, S3, and S4).

Furthermore, to ensure the conclusions based on Tables II
and VII about the decrease in AAE with the increase in speed
and the conclusion that the AAE will decrease with the increase
in texture contrast, we analyzed the AAEs of all 12 sequences,
keeping αθ and αm constant at different values. Table IX shows
the AAEs in all sequences for fixed αθ and αm values at 40.
The AAEs in this table confirm our conclusion that the AAE
decreases with the increase in speed and texture. Comparing
the error values in Tables VII and IX, it is clear that tuning
of regularization weights is very important in getting accurate
optical flow. Similarly, Table X shows the EPEs for a fixed
αθ and αm value of 40 for the sequences. This also reaffirms
that the EPE increases with the increase in speed but decreases
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TABLE IX
AAEs FOR FIXED REGULARIZATION WEIGHTS: αθ = 40 AND αm = 40

TABLE X
EPEs FOR FIXED REGULARIZATION WEIGHTS: αθ = 40 AND αm = 40

with the increase in texture and comparing values based on
Tables VIII and X reveals that tuning of regularization weights
is needed.

Finally, a similar analysis as in the previous one has been
performed, but by adding complexity to the motion. The new
sequences involve large changes in (yaw and pitch) angles.
All these sequences are ten frames long. The optical flow is
computed for varying regularization weights, and the errors
are computed on a small RoI (the one shown in Fig. 6, right).
The minimum AAE and EPE are shown in Tables XI and XII,
respectively, for all the 12 different sequences in this complex
set. All these sequences have the same degree of egomotion, but
the onboard camera moves at different speeds and on different
textures. Here, we can observe almost the same trends in error
values and regularization weights as in the previous study. αθ

has to be increased when the speed and texture contrast increase
for both the AAE and EPE, whereas αm has to be increased
when the texture contrast increases for both the AAE and EPE.
Because sequences have egomotion, changes in αm do not
affect much in the AAE; it is almost constant with the increase
in speed for the AAE, and it has to slightly decrease with the
increase in speed for the EPE.

For the completeness of our study, we have added few
independently moving vehicles in the scene and performed
similar analysis. In this particular case, the RoI corresponds
to the one shown in Fig. 6, left. As expected, independently
moving objects are another source of errors that cannot be
tackled merely by tuning regularization weights, although it
could improve. The relative motion of onboard camera and
moving vehicles causes different groups of flow vectors. Errors
due to occlusions and due to moving objects present in the scene
are not under our control by tuning regularization weights.
Overall, we can tune on the things that are related with static
and under our control (such as speed and texture), but not on
the behavior of dynamic moving vehicles present in the given
scenario.

VIII. DISCUSSION

Although it is out of the scope of this paper the question on
how we can tune the regularization parameters could arise. In
general, based on the aforementioned study, we can say that
having the best set of parameters would depend on the current

TABLE XI
MINIMUM AAEs AND THEIR CORRESPONDING

REGULARIZATION WEIGHTS (αθ, αm)

TABLE XII
MINIMUM EPEs AND THEIR CORRESPONDING

REGULARIZATION WEIGHTS (αθ, αm)

scenario; however, for a given set of regularization parameters
(independently, whether it is the best set), we can adapt its
values according to the speed and texture using the information
presented in the previous section. We perceive that this analysis
is just a tip on how to proceed and a rigorous study and valida-
tion should be performed to define a rule to adapt regularization
parameters to particular characteristics of a sequence. A much
deeper study is required to conclude adaptation rules in the case
of combinations of several characteristics of any sequence. The
study in this paper is a starting point in that direction.

Although an increase in speed of the vehicle camera can be
compensated for by increasing the camera cycle time, which is
by a higher number of frames per second (FPS), the increase
in the number of frames leads to higher computation burden.
A related work [32] in that direction proposes to change the
resolution of images for varied FPS in a variational hierarchical
framework. Moreover, the maximum number of FPS of a
camera is limited by its hardware. In this paper, the influence of
vehicle speed for a fixed cycle time of a camera is considered.

IX. CONCLUSION

This paper has shown that the polar representation of flow
vectors is very convenient in ADAS scenarios due to its
freedom of differently weighing regularization terms and has
further used polar-represented optical-flow estimation for the
analysis. The analysis of optical-flow accuracy to specific char-
acteristics of a driving scenario, e.g., vehicle speed and road
texture, is performed. It is concluded that there is a need to
tune the regularization parameters, depending on the needed
accuracy (angular or magnitudinal) and for varying speeds and
textural properties of the road. This paper has also presented a
framework and generated synthetic video sequences along with
ground-truth flow fields for different scenarios of speeds and
road textures.
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