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a b s t r a c t

This paper proposes a new framework for extracting dense disparity maps from a multispectral stereo rig.
The system is constructed with an infrared and a color camera. It is intended to explore novel multispectral
stereo matching approaches that will allow further extraction of semantic information. The proposed
framework consists of three stages. Firstly, an initial sparse disparity map is generated by using a cost func-
tion based on feature matching in a multiresolution scheme. Then, by looking at the color image, a set of
planar hypotheses is defined to describe the surfaces on the scene. Finally, the previous stages are com-
bined by reformulating the disparity computation as a global minimization problem. The paper has two
main contributions. The first contribution combines mutual information with a shape descriptor based
on gradient in a multiresolution scheme. The second contribution, which is based on the Manhattan-world
assumption, extracts a dense disparity representation using the graph cut algorithm. Experimental results
in outdoor scenarios are provided showing the validity of the proposed framework.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The development of multispectral systems has been an attrac-
tive research topic in the computer vision field during the last dec-
ade; mainly because they provide a rich representation of the
scene by means of a collection of images taken by different sensors.
These systems have grown to become a significant tool for dealing
with a wide range of problems, for instance: remote sensing, nav-
igation, surveillance, medical imaging, among others. However, in
the 3D information recovery domain the potentiality and capabil-
ity of such systems are still not clear. In the current work, a multi-
spectral stereo matching algorithm for extracting dense disparity
maps from thermal infrared and color1 images is presented. These
images are acquired with a Long Wave Infra-Red band camera
(LWIR) and a color camera (VS) respectively.

Thermal infrared/visible multispectral 3D representations can
be broadly divided into two categories according to the role per-
formed by the LWIR camera. The first category includes systems
that combine thermal infrared cameras with well-studied tech-
niques for extracting 3D, such as stereo-vision systems (VS/VS)
or structured light. These systems are responsible for providing
depth information, which is then enriched with the thermal mea-
surement (e.g., Trivedi et al., 2004; Yang and Chen, 2011).
Although, a valid multispectral representation of the given scene
ll rights reserved.
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is achieved, the thermal information is treated as a complementary
source. That is, only mapping thermal infrared information into the
resulting 3D representation. On the contrary, the second category
includes those approaches where thermal and visible information
is matched for extracting a sparse 3D representation (e.g., Krotosky
and Trivedi, 2007; Barrera et al., 2010). In other words, the infor-
mation is used in a collaborative framework.

Up to our knowledge dense disparity maps only from the first
category have been reported in the literature. However, the
increasing number of systems where LWIR and visible cameras
coexist leads us to state the following questions: ‘‘is it possible to
obtain dense disparity maps from a multispectral stereo head de-
fined with a camera working in the visible and another in the ther-
mal infrared spectral band?’’. From an efficiency point of view we
wonder whether these complementary sensors could be used in a
cooperative framework that allows to exploit thermal and visible
information for extracting a 3D representation.

The structure of the paper is the following. A review of related
work on multispectral stereo algorithms is presented in Section 2.
Then, the steps of the proposed algorithm are presented in Sec-
tion 3. Technical details of multimodal stereo head used for evalu-
ating the proposed approach are presented in Section 4, together
with details of the generated data set and the obtained experimen-
tal results. Conclusions and final remarks are given in Section 5.
2. Related work

The extraction of 3D information from multispectral stereo
heads (LWIR/VS) has attracted the interest of researchers in
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different computer vision applications, for examples: human
detection (Han and Bhanu, 2007), video surveillance (Krotosky
and Trivedi, 2008), and 3D mapping of surface temperature (Yang
and Chen, 2011; Prakash et al., 2006). Recently, a comparison of
two stereo systems is presented in (Krotosky and Trivedi, 2007),
one working in the visible spectrum (composed of two color
cameras) and the other in the infrared spectrum (using two LWIR
cameras). Since that study was devoted to pedestrian detection,
the authors conclude that both, color and infrared based stereo,
have a similar performance for such a kind of applications.
However, in order to have a more compact system they propose
a multimodal trifocal framework defined by two color cameras
and a LWIR camera. In this framework, infrared information is
not used for stereoscopy but just for mapping LWIR information
over the 3D points computed from the VS/VS stereo head. This
allows to develop robust approaches for video surveillance applica-
tions (e.g., Krotosky and Trivedi, 2008).

On the contrary to the previous approaches, a multimodal ste-
reo head constructed with just two cameras, an infrared and a col-
or one is proposed in (Krotosky and Trivedi, 2007). In this case the
challenge is to match regions that contain human body silhouettes.
Since their contribution is aimed at person tracking, some assump-
tions are applied, for example a foreground segmentation for dis-
closing possible human shapes, which are corresponded by
maximizing mutual information (Viola and Wells, 1997). Although,
these assumptions are valid, they restrict the scope of applications
to those scenarios containing pedestrians. Furthermore, it should
be noted that this approach is able to extract 3D information only
on those pixels defining the surface of the pedestrian’s body.

A more general solution should be envisaged, allowing such a
kind of multispectral stereo head to be used in different applica-
tions. In other words, the matching should not be constrained to
regions containing some predefined characteristic (e.g., human
body silhouettes). Note that formulating the solution in a general
framework is mandatory in order to extract dense disparity maps.

Up to our knowledge, none of the previous multispectral stereo
algorithms for thermal infrared and visible images are able to ob-
tain dense representations. Although the proposed framework is
based on a Manhattan world assumption, which could be seen as
a constraint, it should be noted that piecewise planar representa-
tions are valid in most of man-made environments (Coughlan
and Yuille, 1999).
3. Piecewise planar stereo

The proposed approach consists of three stages. Firstly, it starts
by estimating a sparse but accurate disparity map of the scene.
Then, in the second stage the initial map is represented by means
of a set of planes. Finally, a dense disparity map is obtained by a
piecewise planar labeling framework. These stages are detailed
next; an illustration is provided in Fig. 1. For the sake of presenta-
tion simplicity, throughout this paper thermal infrared images ILWIR

will be referred to as infrared images, while color images will be
referred indistinctly as color or visible images IVS (VS: visible
spectrum).
3.1. Initial disparity map

The goal of this section is to compute an initial disparity map,
which will be fitted by a set of planes. This disparity map is ob-
tained from a matching cost volume following a local window
based approach, in which a Winner Take All (WTA) strategy is used
for disparities selection. The main challenge of this first stage are
both, to get a large number of good correspondences and to have
a high accuracy in their locations.
In order to address the matching problem, we propose to extend
a cost function based on mutual information by enriching it with
gradient information in a scale space representation (Barrera
et al., 2010). A motivation of this proposal is shown in the two left-
most illustrations in Fig. 2, LWIR does not match at a pixel level
with VS; so classical stereo strategies cannot be directly applied.
On the contrary, mutual information, as shown in similar multi-
spectral problems (e.g., Pluim et al., 2001; Fookes et al., 2004),
can be used in this case. Furthermore, in the same figure we can
see that edges seem to be a relevant feature present in both modal-
ities; this motivates us to include this kind of information in the
proposed solution. Finally, a scale space representation adds
robustness and spread local matches from coarser to finer scales
increasing the number of final correspondences. In order to tackle
the second challenge mentioned above, related with the accuracy
of the locations, disparity values are obtained by local quadratic
interpolations.

The initial disparity map is obtained by using a matching cost
function inspired by Barrera et al. (2010); actually, a slight modifi-
cation is introduced to improve the number of correspondences.
This assumes that images are rectified, therefore the searching
space is constrained to one dimension. So, let: p ¼ ðx; yÞ be a given
pixel in the color image IVS; q ¼ ðxþ d; yÞ be its expected corre-
spondences in the infrared thermal image ILWIR; and d be the dis-
parity value. The cost of corresponding two windows centered on
points p and q is obtained as follows:

Cðk;p; dÞ ¼ kCMIss ðp; dÞ þ ð1� kÞCGIss ðp;dÞ; ð1Þ

where CMIss and CGIss are the cost terms based on the mutual and gra-
dient information in a scale space representation, which will be de-
tailed next; and d ¼ fdmin; . . . ; dmaxg.

By definition in information theory, mutual information (MI)
measures the information content in common between two ran-
dom sampled signals (I1 and I2), considering them as a collection
of symbols that are drawn in a random manner (Cover and Thomas,
1991). However, from the point of view of our problem I1 and I2 are
a pair of windows centered on IVSðpÞ and ILWIRðqÞ respectively,
which encode energy measurements in visible and thermal infra-
red bands. Similarly, we propose to use MI as a cost function that
assigns a value depending on its information content; in other
words, probabilities of symbols. Formally, MIðI1; I2Þ is defined in
terms of individual entropies hð�Þ and joint entropy hð�; �Þ as:

MIðI1; I2Þ ¼ hðI1Þ þ hðI2Þ � hðI1; I2Þ: ð2Þ

Alternatively, the above equation can be expressed in its contin-
uous form as integrals of the marginal probability distribution
functions (PDFs) and joint PDF of pixel values i1 and i2 into I1

and I2 respectively, then:

hðIÞ ¼ �
Z 1

0
PIðiÞ log PIðiÞdi; ð3Þ

hðI1; I2Þ ¼ �
Z 1

0

Z 1

0
PI1 ;I2 ði1; i2Þ log PI1 ;I2 ði1; i2Þdi1di2; ð4Þ

where PI1 ;I2 represents the joint PDF and PI the marginal PDFs. Kim
et al. Kim et al. (2003) approximate these PDF and PDFs by a Parzen
window density estimation, which is a sum of Gaussian distribu-
tions g, with mean l and covariance w (a detailed explanation can
be found in (Viola and Wells, 1997)). In the current work a nonpara-
metric estimator (NP) (Dowson et al., 2008) is used for computing
the joint PDF, instead of using a Parzen estimator. In this way, we
avoid dependencies in the selection of parameters: l and w of the
Parzen estimator and the parameter needed for binning I1 and I2.
Notice that a joint PDF is a two dimensional histogram, where rows
and columns represent symbols from I1 and I2. In our scope, these
symbols come from pixel values of multispectral images; however,



Fig. 1. Illustration of the algorithm’s stages.

Fig. 2. Inputs and output images of first stage: (a) rectified infrared image ILWIR; (b) rectified visible image IVS; and (c) initial sparse disparity map Dmap0.
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since thermal infrared measurements tend to be concentrated in
few bins, particularly in outdoor scenes where the temperature re-
mains uniform (thermal equilibrium), the contribution of the esti-
mator used in the current work is significant because it does not
require a parameter tuning for binning I1 and I2 as Barrera et al.
(2010). Hence, the joint PDF is obtained as:

PI1 ;I2 ði1; i2Þ ¼ NPðI1; I2Þ: ð5Þ

Once PI1 ;I2 is obtained, the joint entropy term, hðI1; I2Þ in Eq. (4), is
computed as follows:

hðI1; I2Þ ¼ �
X

i12I1 ;i22I2

logðPI1 ;I2 ði1; i2ÞÞ � gwði1; i2Þ; ð6Þ

where gw is a Gaussian kernel needed to approximate the continuous
form in Eq. (4) from to its equivalent discrete (see Kim et al., 2003;
Hirschmuller, 2008 for more details). In practice, we found that
using a small kernel of 3� 3 pixels is enough for achieving good
approximations, despite of the few samples in I1 and I2. Finally, mar-
ginal PDFs, corresponding to PI1 ðiÞ and PI2 ðiÞ in Eq. (3), are computed
in a similar way to the joint probability but along each dimension of
PI1 ;I2 . Thus, PI1 ði1Þ ¼

P
i22I2

PI1 ;I2 ði1; i2Þ and PI2 ði2Þ ¼
P

i12I1
PI1 ;I2 ði1; i2Þ.

Then:

hðIÞ ¼ �
X

i

logðPIðiÞÞ � gwðiÞ; ð7Þ

where PIðiÞ represents PI1 ði1Þ or PI2 ði2Þ, which are one dimensional
vectors. The matching cost volume of mutual information for the
whole image is:

CMIðp;dÞ ¼ hIVS ðpÞ þ hILWIR ðqÞ � hIVS ;ILWIRðp; qÞ; ð8Þ

remember that q ¼ ðxþ d; yÞ are the expected correspondences of p
in ILWIR computed from d ¼ fdmin; . . . ;dmaxg.

Mutual information is able to find linear and nonlinear correla-
tions between a pair of windows, taking into account the whole
dependence structure of variables. However, since local image
structures provide rich information that could be also exploited,
we introduce a term based on gradient information (GI). Thus, this
new term is intended to contribute to the matching score in tex-
tured regions comparing the orientation of gradient vectors. It is
based on the observation that gradient vectors with similar orien-
tations unveil potential matches. The GI is defined by the product
of two elements; the first one measures the similarity in the orien-
tation of gradient vectors; while the second one is a factor that
weights this similarity value. Analogously to MI, the gradient infor-
mation is extracted from I1 and I2; it is defined as follows:

GIðI1; I2Þ ¼
X
x;x0

wðhðr1ðxÞ;r2ðx0ÞÞÞminðjr1ðxÞjjr2ðx0ÞjÞ; ð9Þ

where: r1ð�Þ is the gradient vector field of I1; x is a coordinate ref-
ereed to this vector field (same for r2ð�Þ, where x0 2 I2); j � j is the
norm; hðx; x0Þ is the angle between them; and wðhÞ is a function that
penalizes gradient orientation out of phase or counter phase:
wðhÞ ¼ ðcosð2hÞ þ 1Þ=2. The gradient information is computed sim-
ilarly to MI on two windows centered on rðIVSðpÞÞ and rðILWIRðqÞÞ,
thus the cost volume CGIðp;dÞ is obtained by sliding them through
the searching space defined by each p on the reference image.

It has been reported in the literature (e.g., Fookes et al., 2004;
Pluim et al., 2001; Barrera et al., 2010) that an additional improve-
ment can be obtained by using a scale space representation that
propagates cost values between levels. It starts in the coarsest level
and ends in the finest one (from level t to 0) as is depicted next:

CMIss ðp;qÞ ¼ ½a0; . . . ;at�T � CMIðLt
0ðp;qÞÞ; ð10Þ

CGIss ðp;qÞ ¼ ½b0; . . . ;bt�
T � CGIðLt

1ðp;qÞÞ; ð11Þ

where t is an index that refers to the level in the scale space (t 2 N);
Lt

0 and Lt
1 are scale space representations given by convolution of a

image with a Gaussian kernel of standard deviation (r), which is
progressively increased until obtaining an image stack. Two Gauss-
ian derivative kernels of order 0 and 1 are used to generate blurred
and gradient stacks. The ai and bi are weights for the linear combi-
nation of the results from the different levels of the stack. From CMIss

and CGIss a volume of cost values is obtained from the cost function
presented in Eq. (1). Finally, an initial sparse disparity map (Dmap0)



F. Barrera et al. / Pattern Recognition Letters 34 (2013) 52–61 55
is extracted using a bounded WTA strategy. This bounded WTA only
considers disparity values in Eq. (1) resulting from Cðk;p; dÞP s.

Fig. 2(c) shows an illustration of the sparse disparity map
resulting from this first stage (output). The multispectral input
images are rectified during the calibration stage (see Section 4
for more details).

3.2. Plane based hypotheses

In this section the given color image is segmented into a set of
regions. Then, each region is represented by a single plane, using
the information from the initial sparse disparity map. These planes
are used in the final stage as labels for computing the dense dispar-
ity map we are looking for.

3.2.1. Support region segmentation
This step involves the combination of two segmentation algo-

rithms (i.e., Levinshtein et al., 2009; Felzenszwalb and Huttenl-
ocher, 2004), which are applied to IVS image for obtaining regions
that preserve the objects boundaries in the scene. These segmenta-
tion algorithms are used in a split-and-merge scheme, in order to
unveil potential planar regions. So, the image is decomposed into
small regions (superpixels) that later on are connected, following
a perceptual criterion. It should be noted that this combination
of algorithms is motivated by the application domain (man-made
environments).

The segmentation into support regions begins by splinting the
given IVS into a large set of small regions, referred to as superpixels
(Levinshtein et al., 2009): S ¼ fs0; s1; . . . ; smg. Without loss of gener-
ality, we assume that disparity values inside a superpixel si can be
accurately fitted by a plane; this assumption is met as long as IVS is
oversegmented. Hence, a trade-off between size of superpixels and
fitting error should be found (in the current work 1000 regions
were used). Large regions have a high probability of covering more
than a single planar surface, on the contrary, smaller ones provide
few samples to make a proper estimation of the geometry of the
selected region. Then, in order to extract perceptually meaningful
regions, the segmentation algorithm proposed in (Felzenszwalb
and Huttenlocher, 2004) is applied to IVS. This results in a set of P
partitions of the reference image: P ¼ fp0; p1; . . . ; png. Finally, the
results from superpixels (S) belonging to the same perceptual re-
gion (P) are connected giving rise to the support regions
R ¼ fr0; r1; . . . ; rngwe were looking for (details on the two segmen-
tation algorithms can be found in (Levinshtein et al., 2009; Fel-
zenszwalb and Huttenlocher, 2004) respectively):

ri ¼
[
j2Xi

sj; Xi ¼ fjjsj \ pi P sj \ pk; k – ig ð12Þ

where Xi are the indexes of those superpixels with a maximum
overlaping with the given perceptual region pi. Fig. 3 shows an illus-
tration of the results from the two segmentation algorithms, S and
P, as well as their fusion R.

3.2.2. Planar hypothesis generation
Once the sparse disparity map (Dmap0) has been computed and

the color image segmented into ri regions, a set of hypotheses of
planar regions to describe the surfaces in the scene is imposed.
So, for every region ri 2 R a RANSAC like algorithm (Fischler and
Bolles, 1981) is employed to estimate a pair hbn; xi, where bn is the
normal vector and x is the mean value coordinates of the points
used for fitting this plane. Note that the planar region estimator
operates in the disparity space ðx; y; dÞ, which is different to previ-
ous approaches that work on depth maps represented in the
Euclidean space (e.g., Gallup et al., 2010; Sinha et al., 2009).

A RANSAC based plane estimator is chosen since the accuracy of
the sought disparity maps depends directly on the confidence of
the planar hypotheses. By definition, these methods are capable
to find local models from noisy cloud of data; for instance, previous
works have demonstrated that this kind of algorithms overcomes
least squared based techniques, since they are less sensitive to out-
liers (Torr and Zisserman, 2000). It should be mentioned that only
those regions ri that contain three or more valid disparities
(Dmap0ðriÞ) are considered during this fitting step.

Once RANSAC algorithm has been applied to all the regions in R,
a postprocessing stage is performed to merge planar patches de-
fined by similar parameters. This postprocessing is performed to
simplify the number of planar hypotheses. Note that the planes
have been obtained in a local way, then the number of planar
hypotheses could be as large as the number of regions in R. Hence,
the goal of this postprocessing stage is to reduce the number of
planar hypotheses P ¼ fp1;p2; . . . ;png up to a minimum value so
that the structure of the scene is still preserved. The plane linking
stage is based on a distance (distP) computed from two planar
patches, which was initially proposed in (Tao et al., 2001). It is de-
fined as follow:

distPðpi;pjÞ ¼ lðpi;pjÞ þ lðpj;piÞ; ð13Þ
lðpi;pjÞ ¼
ðxj � xiÞ � bnjbni � bnj

: ð14Þ

The Eq. (14) corresponds to the length of the segment defined by xj

and the intersection of bnj , passing through xj, with pi. In order to
make it clear, a 2D representation of the segment lengths used for
computing Eq. (13) is given in Fig. 4.

The previous planes distance (Eq. (13)) is used as a similarity
function for merging a pair of planar patches. Hence, two planar
patches are fused into a single one if (distPðpi;pjÞ 6 slink). Once
all possible combinations have been evaluated (only connected
neighbor regions are considered) a new relabeled R is obtained
and the RANSAC algorithm is called again until convergence is
reached.

Finally, once there are not more planes to be joined, a noisy pla-
nar hypothesis removal is performed. It is based on detecting the
predominant planar orientations, using a PCA over all normal vec-
tors (bn). This filtering stage tends to remove planes with an orien-
tation bni far away from the principal directions. This results in a
compact set of planar hypotheses P ¼ fp1;p2; . . . ;pcg; it is ex-
pected that the number of hypotheses has been reduced: c � n.
Fig. 5(b) shows the planar hypotheses obtained after merging pla-
nar patches with similar parameters and filtering the noisy ones.
The original set contains 179 hypotheses (see Fig. 5(a)), while the
one presented in Fig. 5(b) is defined by only 14 hypotheses. They
were obtained after four iterations of the plane linking stage.
3.3. Piecewise planar labeling

The set of planar hypotheses obtained above are now converted
into labels for reformulating the disparity computation as a global
minimization problem. It allows to take into account contextual
constraints in order to achieve a dense disparity representation
from multispectral information. The global minimization problem
is based on the local correlation indicators computed in previous
sections (i.e., mutual and gradient information boosted by the scale
space representation). In this section, former indicators that were
extracted at a level of pixels, are now interpreted as projections
of planar surfaces. This helps to constrain the searching space to
a few candidates, while spatial coherence of disparity values is
hold. Notice that an extra planar hypothesis denoted as p1 that
represents all those regions out of the stereo range is added to P
(e.g., sky or distant surfaces).



Fig. 3. Illustration of the support region segmentation: (a) original IVS; (b) superpixels (S) obtained from Levinshtein et al. (2009); (c) perceptual regions (P) from Felzenszwalb
and Huttenlocher (2004); and (d) support regions (R) obtained by fusing (b) and (c).

Fig. 4. 2D illustration of segment lengths used to compute distPðpi;pjÞ.
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The Markov Random Field theory provides a framework to relate
local correlation indicators together with contextual constraints.
These two elements are used to define the energy function. Then,
in the current work, this function is minimized through the classical
graph cuts (Boykov et al., 2001). It works by defining a regular grid
Fig. 5. Planar hypotheses simplification: (a) original set of planar hypotheses from the seg
four iterations of the postprocessing stage (14 planes).
where every node represents a pixel in the image; these nodes are
then connected to a set of additional nodes corresponding to the
planar hypotheses P. Hence, a graph G ¼ hV; Ei, where V represents
the vertices and E represents the edges of the graph, is obtained.
Then, the graph cut algorithm searches in G for the best set of labels
(f) that minimizes the following energy function:

Eðf Þ ¼
X
p2P

DpðfpÞ þ
X

p;q2N
ksmoothVpqðfp; fqÞ; ð15Þ

where P is the set of pixels in the image; Dp is the data term that
measures how well a planar hypothesis explains a disparity value
for a given pixel p; Vpqðfp; fqÞ is a smoothness prior computed in a
neighborhood N (in the current work the first-order Markov Ran-
dom Field is considered, in other words a neighborhood of four con-
nections); fp; fq are the current labels for pixels p and q respectively;
mentation presented in Fig. 3 (179 planes) and (b) planar hypotheses resulting after



Fig. 6. Graph cuts outcomes: (a) labeled regions from graph cuts and (b) dense disparity map obtained with the proposed approach.
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and ksmooth is a weighting factor for the regularization term. The Dp

function is defined as follows:

DpðfpÞ ¼
minðCðfpÞ;CmaxÞ if f p 2 fp1;p2; . . . ;png;
0:9 � Cmax if f p 2 fp1g;

(
ð16Þ

the cost assigned to a pixel p represents the degree of membership
of p to a given plane pi. This cost is obtained from Cðk;p;dÞ (see Eq.
(1)), where d corresponds to the hypothetical disparity obtained if p
is assigned to the plane pi; if certain hypothesis pi produces an
inconsistent d, for instance a value outside of the searching space,
that p is penalized with a maximum cost Cmax. Finally, the smooth-
ness term Vpq is defined as:

Vpqðfp; fqÞ ¼ r �
0 if f p ¼ fq;

dmax if f p or f q 2 p1;
dðfp; fqÞ otherwise;

8><>: ð17Þ

r is the gradient of VS image; and dðfp; fqÞ is the Euclidean distance
between p and q derived from the planes they belong to. The min-
imization of Eq. (15) assigns every pixel (p) of the image to a planar
hypothesis pi (see Fig. 6(a)). Then, from this membership the corre-
sponding disparity value is obtained by computing the intersection
of a ray passing through p with the assigned plane pi. Fig. 6(b)
shows the dense disparity map corresponding to the illustration
used as a case study in previous sections.

4. Experimental results

This section first describes the multispectral stereo head, details
about its geometry and calibration are also provided. Then, the
proposed multispectral data set and the evaluation framework
are presented. Finally, resulting dense disparity maps together
with their analyses are given.

The multispectral stereo head consists of a pair of cameras sep-
arated by a baseline of 12 cm and a non verged geometry. This con-
figuration is obtained by adjusting the pose of the cameras till their
z coordinate axes are parallel, and perpendicular to the baseline.
Hence, the images provided by the multispectral stereo head are
pre-aligned, ensuring their right rectification. Thermal infrared
images are obtained with a Long-Wavelength InfraRed camera
(PathFindIR from Flir2) while color ones with a standard Sony
ICX084 camera, which has a focal length of 6 mm.

Multispectral stereo camera calibration is considerably more
complex than the classical VS/VS, because the LWIR sensor mea-
sures heat variations. Therefore, a calibration pattern ideally
should have two different temperatures for generating contrast
2 www.flir.com.
images. In practice, this is not feasible. Furthermore, the effect of
thermal diffusion between the calibration pattern and air causes
both smooth step edges and distorted corners in infrared images,
which are not perceived at a glance. In order to avoid these prob-
lems we calibrate the multispectral head in an outdoor scenario
using a metallic checkerboard. In this way, sun rays are reflected
in white rectangles and absorbed in the black ones, this procedure
enhances the contrast of image and helps the detection of calibra-
tion points. Although the problem of blurred calibration points is
partially solved by the lighting reflection/absorption technique, a
saddle point detector is considered instead of a classical corner
detector to obtain more robust results.

As mentioned above, the cameras have been aligned before
starting the calibration process. This action ensures that the
needed projective transformations for their rectification are
smooth (the image planes’ position are approximately coplanar).
Once each camera has been calibrated, and its intrinsic parameters
are known, the next step is to estimate the geometry of multispec-
tral stereo rig. Since the current work is focused on the generation
of dense disparity maps, it is only necessary to estimate the epipo-
lar geometry (fundamental matrix F). Then, with this matrix, the
next step is to rectify the multispectral images.

The image rectification is a critical issue since the proposed
algorithm assumes that all epipolar lines in the multispectral
images are horizontally aligned. Despite the accuracy with which
F was estimated, it is essential to use a rectification method that
takes into account the large dissimilarity of intrinsic parameters
of the cameras. In the current work the method proposed in (Mal-
lon and Whelan, 2005) has been used. This reduces the loss and
creation of pixels due to projective transformations during the rec-
tification process (resampling effect), while preserving the aspect
of image content.

In order to evaluate the proposed method a set of multispectral
images has been collected. The captured data depict a variety of ur-
ban scenes, which includes: buildings, sidewalk, trees, vehicles,
among others (see Fig. 7). It consists of 116 scenes. Every scene in-
cludes their corresponding thermal infrared and color images, which
were acquired by using the proposed multispectral stereo head, and
processed till get a rectified pair. Moreover, this includes both a dis-
parity map of the scene and a hand-annotated map of planar regions.

The disparity maps are provided by a VS/VS stereo vision sys-
tem: Point Grey Bumblebee (PGB). Note that, for the sake of sim-
plicity, the multispectral stereo head was presented as an
independent system, however it uses one of the cameras that be-
longs to PGB—the right one. In other words, the camera refereed
to as VS in the current section corresponds to the right camera of
PGB. This stereo rig setup was selected because it is efficient in
terms of hardware and software.

http://www.flir.com


Fig. 7. Examples of evaluation data set; each column corresponds to: (1st) ILWIR images; (2nd) IVS images; (3rd) maps of planar regions; and (4th) synthesized disparity maps
used as ground truth for evaluating the proposed approach.
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Additionally, our data set also includes a group of maps that
indicate connected planar regions. These maps have been hand-
labeled taking into account the geometry of the surfaces, thus a un-
ique label is assigned to each region and it identifies the pixes that
belongs to the same plane. Fig. 7 shows some of the images used
for validating the proposed approach. ILWIR and IVS images are rec-
tified; in both cases the size of resulting images is 506� 408 pixels.
Hand-labeled and disparity maps are given in their original format
640� 480 pixels. Since the disparity maps provided by PGB are
only accurate in textured regions, we have used a hand-labeled
planar regions for obtaining dense and accurate representations,
particularly in textureless and noisy regions. To address this prob-
lem, we fit a plane to each hand-annotated region, through of im-
age coordinates and corresponding disparity values. The disparity
maps resulting from this user supervised labeling process are
shown in Fig. 7 (4th column).

The proposed approach has been validated using the data set
presented above. Dense disparity maps were obtained by setting
the different parameters as indicated next; the different values
were empirically obtained and the same setting is used in all the
scenarios. The initial Dmap0 is obtained by defining dmin ¼ 0 and
dmax ¼ 64. The scale space representation contains three levels
and the values used for propagating mutual and gradient informa-
tion through the different levels: ½a0; . . . ;at � ¼ ½0:2;0:3; 0:5� and
½b0; . . . ; bt � ¼ ½0:2;0:3;0:5�; threshold s is set as 10% of the maxi-
mum cost value; finally, mutual and gradient information in Eq.
(1) are fused defining k ¼ 0:65. The two values related with the
planar hypothesis generation were set as follow: sRANSAC ¼ 0:2
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and slink ¼ 2:5. The values given by default in the graph cut imple-
mentation provided by Gallup et al. (2010) were used for the global
minimization.

Figs. 8 and 9 show the results obtained for eight different
scenes. The initial multispectral stereo images are provided in
the first and second columns of Fig. 7. The results are grouped by
scenes and they show the output of each step of proposed algo-
rithm. So, every scene has associated four images: (top-left) corre-
sponds to support regions R, which split up the IVS image into
planar regions; (top-right) is an illustration of the planar hypothe-
ses P; (bottom-left) shows the labeled regions obtained by graph
cuts; and (bottom-right) is the final disparity map. Notice that P
is the set of labels used during the minimization step, and the
disparity map is obtained by using the plane parameters corre-
sponding to each label. On the other hand, it can be appreciate
how the minimization stage is able to filter out small regions and
propagates information across the neighbors (see (bottom-left)
illustrations in the different scenes and compare them with their
corresponding (top-right) images in Figs. 8 and 9).

Fig. 9 (scene 5) shows that the proposed approach can obtain
dense disparity maps even in non-planar regions. In this illustration
a large cylinder is approximated by two planar patches. The number
of planar patches depends on the value used for setting the slink

parameter. Even in this challenging case the proposed algorithm
is capable of finding a set of planar hypotheses, and converges to-
ward an optimal solution that preserve the appearance of the scene.

The accuracy of proposed algorithm is evaluated by using two
metrics. They are frequently employed as quantitative evaluation
criteria for stereo matching algorithms. Initially, the absolute mean
error (Eabs) is computed in a global manner for a given disparity
map as follows:
Fig. 8. Experimental results from different stages of the proposed approach; in each s
hypotheses P; (bottom-left) labeled regions from graph cuts; and (bottom-right) final di
Eabs ¼
1
N

XN

j¼1

jdCðjÞ � dTðjÞj; ð18Þ

where dC is the disparity map computed by the proposed algorithm,
dT is the ground truth, and N is number of evaluated points. Since
our data set offers reliable ground truth only in those points that
lie on a planar region, the error measurement is limited to those im-
age coordinates that have a valid ground truth data and disparity
value. Notice that the label p1 used during the minimization step
corresponds to non disparity, for this reason these image coordi-
nates are excluded from the evaluation. The main drawback of
using Eabs as an evaluation metric lies on the fact that it does not
distinguish between few disparity estimations with large errors
and lot disparity estimations with small errors. Furthermore, it does
not take into account that a small disparity value corresponds to a
large depth value, and therefore its contribution to the global error
should be different, for instance, in comparison to a large disparity
(small distance). Hence, in order to take into account this effect, the
mean relative error (Erel) is also used. It is computed as follows:

Erel ¼
1
N

XN

j¼1

jdCðjÞ � dTðjÞj
dTðjÞ

: ð19Þ

Eabs and Erel are computed from the 8 scenes that are used as
case studies (see Figs. 8 and 9); their corresponding error scores
are presented in Table 1. The Erel in the scenes 1 and 4 are consid-
erable larger than the rest of scenes in the data set. In both cases
these large values result for the wrong matchings due to the lack
of texture in the predominant geometries (a vertical non-textured
wall).
cene the illustrations correspond to: (top-left) support region R; (top-right) planar
sparity map.



Fig. 9. Experimental results from different stages of the proposed approach; in each scene the illustrations correspond to: (top-left) support region R; (top-right) planar
hypotheses P; (bottom-left) labeled regions from graph cuts; and (bottom-right) final disparity map.

Table 1
Global Eabs and Erel of the case studies presented in Figs. 8 and 9.

Scene 1 2 3 4 5 6 7 8

Eabs 0.635 0.443 0.582 0.629 0.484 0.387 0.465 0.505
Erel 0.167 0.016 0.096 0.144 0.042 0.060 0.062 0.057

Fig. 10. Average accuracy of the results obtained with the proposed approach
computed from the whole data set.

Fig. 11. Average Erel of the results obtained with the proposed approach computed
from the whole data set.
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Fig. 10 shows the average accuracy of the obtained dense dis-
parity maps, when all the scenes in our data set are considered.
For each scene an accuracy histogram is computed by using its cor-
responding ground truth map. The histogram counts the number of
points for a given disparity error, spanning from 0 till 10 pixels.
Then, from all these histograms a single plot is computed showing
the variability of results (see Fig. 10). In this plot the central mark
of each box corresponds to its median value and the edges of the
box are the 25th and 75th percentiles, the whiskers extend to
the most extreme cases.

Fig. 11 shows the average Erel computed from the whole data
set. The Erel measurements are restricted to discrete values from
1 to 20 for the sake of visualization. This plot is similar to the pre-
vious one and presents the box plot of the average relative error
when all the images into the evaluation data set are considered.
Note how the mean Erel decreases to values below 10% when the
disparity is higher than 10 pixels. On the other hand, disparity val-
ues smaller or equal than 10 pixels correspond to distant points
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(several meters away from the stereo rig), which are out of the cal-
ibration range of the current work.

The results presented above answer the question that was for-
mulated in the Introduction (Section 1), which motivated the cur-
rent work. They show that under certain restrictions multispectral
images can be used to extract dense disparity information. This
information can be directly converted into a 3D representation
describing the geometry of the scene. This will allow for instance
to extract semantic relationships between the objects in the scene.

5. Conclusions

The current work presents a novel framework for extracting
dense disparity maps from multispectral stereo images, each one
of its stages is described as well as the image rectification and cam-
era calibration. The results obtained from this research can benefit
those fields where visible and thermal infrared cameras coexist.
The main contribution of current work are as follow: (i) it intro-
duces a cost function for obtaining multispectral matching,
exploiting mutual and gradient information in a scale space repre-
sentation; (ii) it proposes a global minimization scheme, which is
based on the Manhattan-world assumption, to extract dense dis-
parity maps. Finally, although not a theoretical contribution, a
large data set of multispectral stereo images has been generated
and is freely available by contacting the authors.

We have shown that under certain restrictions is possible to ob-
tain accurate disparity maps, however the low correlation between
thermal infrared and visible images restricts its usefulness in com-
plex environments, being this still an open issue. Future work will
be mainly focused on the extraction of a ground truth data, which
should includes depth information both of planar and non-planar
regions. Additionally, different interest regions such as occlusion
and discontinuities would have to be identified, as happen in the
(VS/VS) evaluation frameworks for dense stereo algorithm.
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