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Abstract

Accurate rigid and non-rigid tracking of faces is a challenging task in computer vision. Recently, appearance-based 3D face tracking
methods have been proposed. These methods can successfully tackle the image variability and drift problems. However, they may fail to
provide accurate out-of-plane face motions since they are not very sensitive to out-of-plane motion variations. In this paper, we present a
framework for fast and accurate 3D face and facial action tracking. Our proposed framework retains the strengths of both appearance
and 3D data-based trackers. We combine an adaptive appearance model with an online stereo-based 3D model. We provide experiments
and performance evaluation which show the feasibility and usefulness of the proposed approach.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The ability to detect and track human heads and faces
in video sequences is useful in a great number of applica-
tions, such as human–computer interaction and gesture
recognition. There are several commercial products capa-
ble of accurate and reliable 3D head position and orienta-
tion estimation (e.g., the acoustic tracker system Mouse
[www.vrdepot.com/vrteclg.htm]). These are either based
on magnetic sensors or on special markers placed on the
face; both practices are encumbering, causing discomfort
and limiting natural motion. Vision-based 3D head track-
ing provides an attractive alternative since vision sensors
are not invasive and hence natural motions can be achieved
(Moreno et al., 2002). However, detecting and tracking
faces in video sequences is a challenging task due to the
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image variability caused by pose, expression, and illumina-
tion changes.

Recently, deterministic and statistical appearance-based
3D head tracking methods have been proposed and used by
some researchers (Cascia et al., 2000; Ahlberg, 2002; Mat-
thews and Baker, 2004). These methods can successfully
tackle the image variability and drift problems by using
deterministic or statistical models for the global appear-
ance of a special object class: the face. However, appear-
ance-based methods dedicated to full 3D head tracking
may suffer from some inaccuracies since these methods
are not very sensitive to out-of-plane motion variations.
On the other hand, the use of dense 3D facial data pro-
vided by a stereo rig or a range sensor can provide very
accurate 3D face motions. However, computing the 3D
face motions from the stream of dense 3D facial data is
not straightforward. Indeed, inferring the 3D face motion
from the dense 3D data needs an additional process. This
process can be the detection of some particular facial fea-
tures in the range data/images from which the 3D head
pose can be inferred. For example, in (Malassiotis and
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Strintzis, 2005), the 3D nose ridge is detected and then used
for computing the 3D head pose. Alternatively, one can
perform a registration between 3D data obtained at differ-
ent time instants in order to infer the relative 3D motions.
The most common registration technique is the iterative
closest point (ICP) (Besl and McKay, 1992) algorithm.
This algorithm and its variants can provide accurate 3D
motions but their significant computational cost prohibits
real-time performance. Moreover, this algorithm is
intended for registering rigid objects.

Classical 3D face tracking algorithms that are based on
3D facial features are subject to drift problems. Moreover,
these algorithms cannot compute the facial actions due, for
instance, to facial expressions.

The main contribution of this paper is a robust 3D face
tracker that combines the advantages of both appearance-
based trackers and 3D data-based trackers while keeping
the CPU time very close to that required by real-time track-
ers. In our work, we use the Candide deformable 3D model
(Ahlberg, 2001) which is a simple model embedding non-
rigid facial motion using the concept of facial actions.
Our proposed framework for tracking faces in videos can
be summarized as follows. First, the 3D head pose and
some facial actions are estimated from the monocular
image by registering the warped input texture with a
shape-free facial texture map. Second, based on these cur-
rent parameters the 2D locations of the mesh vertices are
inferred by projecting the current mesh onto the current
video frame. Then the 3D coordinates of these vertices
are computed by stereo reconstruction. Third, the relative
3D face motion is then obtained using a robust 3D-to-3D
registration technique between two meshes corresponding
to the first video frame and the current video frame, respec-
tively. Our framework attempts to reduce the number of
outlier vertices by deforming the meshes according to the
same current facial actions and by exploiting the symmet-
rical shape of the 3D mesh.

The resulting 3D face and facial action tracker is accu-
rate, fast, and drift insensitive. Moreover, unlike many pro-
posed frameworks (e.g., Xiao et al., 2004), it does not
require any learning stage since it is based on online facial
appearances and online stereo 3D data.

The remainder of the paper proceeds as follows. Section
2 introduces our deformable 3D facial model. Section 3
states the problem we are focusing on, and summarizes
the appearance-based monocular tracker that tracks in
real-time the 3D head pose and some facial actions. It gives
some evaluation results. Section 4 describes a robust 3D-
to-3D registration that combines the monocular tracker’s
results and the stereo-based reconstructed vertices. Section
5 gives some experimental results.

2. Modeling faces

In this section, we briefly describe our deformable face
model and explain how to produce a shape-free facial tex-
ture map.
2.1. A deformable 3D model

As mentioned before, we use the Candide 3D face model.
This 3D deformable wireframe model was first developed
for the purpose of model-based image coding and com-
puter animation. The 3D shape of this wireframe model
is directly recorded in coordinate form. It is given by the
coordinates of the 3D vertices Pi, i = 1, . . . ,n where n is
the number of vertices. Thus, the shape up to a global scale
can be fully described by the 3n-vector g; the concatenation
of the 3D coordinates of all vertices Pi. The vector g is writ-
ten as

g ¼ gs þ Asa ð1Þ

where gs is the static shape of the model, sa the animation
control vector, and the columns of A are the animation
units. In this study, we use six modes for the facial anima-
tion units (AUs) matrix A. Without loss of generality, we
have chosen the six following AUs: lower lip depressor,
lip stretcher, lip corner depressor, upper lip raiser, eyebrow
lower and outer eyebrow raiser. These AUs are enough to
cover most common facial animations (mouth and eye-
brow movements). Moreover, they are essential for convey-
ing emotions.

In Eq. (1), the 3D shape is expressed in a local coordi-
nate system. However, one should relate the 3D coordi-
nates to the image coordinate system. To this end, we
adopt the weak perspective projection model. We neglect
the perspective effects since the depth variation of the face
can be considered as small compared to its absolute depth.
Thus, the state of the 3D wireframe model is given by the
3D head pose parameters (three rotations and three trans-
lations) and the internal face animation control vector sa.
This is given by the 12-dimensional vector b

b ¼ ½hx; hy ; hz; tx; ty ; tz; sT
a �

T
: ð2Þ
2.2. Shape-free facial texture maps

A face texture is represented as a shape-free texture
(geometrically normalized image). The geometry of this
image is obtained by projecting the static shape gs using
a centered frontal 3D pose onto an image with a given res-
olution. The texture of this geometrically normalized image
is obtained by texture mapping from the triangular 2D
mesh in the input image (see Fig. 1) using a piece-wise
affine transform, W. The warping process applied to an
input image y is denoted by

xðbÞ ¼Wðy; bÞ ð3Þ

where x denotes the shape-free texture map and b denotes
the geometrical parameters. Several resolution levels can
be chosen for the shape-free textures. The reported results
are obtained with a shape-free patch of 5392 pixels. Regard-
ing photometric transformations, a zero-mean unit-
variance normalization is used to partially compensate for
contrast variations. The complete image transformation is



Fig. 1. (a) An input image with correct adaptation and (b) the
corresponding shape-free facial texture map.
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implemented as follows: (i) transfer the texture y using the
piece-wise affine transform associated with the vector b,
and (ii) perform the gray-level normalization of the ob-
tained patch.

3. Tracking by aligning facial texture maps

3.1. Problem formulation

Given a monocular video sequence depicting a moving
head/face, we would like to recover, for each frame, the
3D head pose and the facial actions encoded by the control
vector sa. In other words, we would like to estimate the vec-
tor bt (Eq. (2)) at time t given all the observed data until
time t, denoted y1:t � {y1, . . . ,yt}. In a tracking context,
the model parameters associated with the current frame
will be handed over to the next frame.

In (Dornaika and Davoine, 2006), we have developed a
fast method to compute this state from the previous known
state b̂t�1 and the current input image yt. An overview of
this method is presented in this section.

3.2. Facial texture model

For each input frame yt, the observation is simply the
shape-free texture map associated with the geometric
parameters bt. We use the HAT symbol for the tracked
parameters and textures. For a given frame t, b̂t represents
the computed geometric parameters and x̂t the correspond-
ing shape-free texture map, that is,

x̂t ¼ xðb̂tÞ ¼Wðyt; b̂tÞ ð4Þ

The estimation of b̂t from the sequence of images will be
presented in Section 3.3.

By assuming that the pixels within the shape-free patch
are independent, we can model the facial appearance using
a multivariate Gaussian with a diagonal covariance matrix
R. In other words, this multivariate Gaussian is the distri-
bution of the facial texture maps x̂t. Let l be the Gaussian
center and r the vector containing the square root of the
diagonal elements of the covariance matrix R. l and r

are d-vectors (d is the size of x). In summary, the observa-
tion likelihood at time t is written as
pðytjbtÞ ¼ pðxtjbtÞ ¼
Yd

i¼1

Nðxi; li; riÞt ð5Þ

where N(xi;li,ri) is a normal density:

Nðxi; li; riÞ ¼ ð2pr2
i Þ
�1=2 exp �q

xi � li

ri

� �� �
; qðxÞ ¼ 1

2
x2

ð6Þ

We assume that the appearance model summarizes the past
observations under an exponential envelope, that is, the
past observations are exponentially forgotten with respect
to the current texture. When the appearance is tracked
for the current input image, i.e., the texture x̂t is available,
we can compute the updated appearance and use it to track
in the next frame.

It can be shown that the appearance model parameters,
i.e., the li’s and ri’s can be updated from time t to time
(t + 1) using the following equations (see Jepson et al.,
2003 for more details on Online Appearance Models):

liðtþ1Þ
¼ ð1� aÞliðtÞ

þ ax̂iðtÞ ð7Þ

r2
iðtþ1Þ
¼ ð1� aÞr2

iðtÞ
þ aðx̂iðtÞ � liðtÞ

Þ2: ð8Þ
3.3. Tracking

We consider the state vector b ¼ ½hx; hy ; hz; tx; ty ; tz; s
T
a �

T

encapsulating the 3D head pose and the facial actions.
The sought geometrical parameters bt at time t are esti-
mated using a region-based registration technique that
does not need any image feature extraction. For this pur-
pose, we minimize the Mahalanobis distance between the
warped texture and the current appearance mean—the cur-
rent Gaussian center lt

min
bt

DðxðbtÞ; ltÞ ¼ min
bt

Xd

i¼1

xi � li

ri

� �2

ð9Þ

The above criterion can be minimized using a Gauss–
Newton method where the initial solution is given by the
previous known state b̂t�1. It is worth noting that the min-
imization is equivalent to maximizing the likelihood mea-
sure given by (5). In the above optimization, the gradient
matrix oWðyt ;btÞ

obt
¼ oxt

obt
is computed for each frame and is

approximated by numerical differences similarly to the
work of Cootes et al. (2001).

On a 3.2 GHz PC, a non-optimized C code of the
approach computes the 3D head pose and the six facial
actions in 50 ms. About half that time is required if one is
only interested in computing the 3D head pose parameters.

3.4. Accuracy evaluation

In (Dornaika and Sappa, 2005), we have evaluated the
accuracy of the above proposed monocular tracker. To this
end, we have used ground truth data that were recovered by
the iterative closest point algorithm (Besl and McKay, 1992)
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Fig. 2. 3D face motion errors computed by the ICP algorithm associated with a 300-frame sequence.
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and dense 3D facial data. Fig. 2 depicts the monocular
tracker errors associated with a 300-frame sequence which
contains rotational and translational out-of-plane head
motions. The nominal absolute depth of the head was about
65 cm, and the focal length of the camera was 824 pixels. As
can be seen, the out-of-plane motion errors can be large for
some frames for which there is a room for improvement.
Moreover, this evaluation has confirmed the general trend
of appearance-based trackers, that is, the out-of-plane
motion parameters (pitch angle, yaw angle, and depth) are
more affected by errors than the other parameters. We point
out that the facial feature motions obtained by the above
appearance-based tracker can be accurately recovered.
Indeed, these features (the lips and the eyebrows) have spe-
cific textures, so their independent motion can be accurately
recovered by the appearance-based tracker.

One expects that the monocular tracker accuracy can be
improved if an additional cue is used. In our case, the addi-
tional cue will be the 3D data associated with the mesh ver-
tices provided by stereo reconstruction. Although the use
of stereo data may seem as an excess requirement, recall
that cheap and compact stereo systems are now widely
available (e.g., [www.ptgrey.com] and [www.viderede-
sign.com]). We point out that stereo data are used to refine
the static model gs in the sense that the facial mesh can be
more person-specific. Moreover, in our developed frame-
work the stereo matching and reconstruction only concern
the vertices of the 3D mesh which corresponds to 0.036% of
a 640 · 480 image.

4. Tracking by aligning texture maps and stereo-based

3D models

In this section, we propose a novel tracking scheme that
aims at computing a fast and accurate 3D face motion. To
this end, we exploit the tracking results provided by the
appearance-based tracker (Section 3) and the availability
of a stereo system for reconstructing the mesh vertices.
The whole algorithm is outlined in Fig. 3. The three stages
are applied to each video frame—stereo pair. Note that the
facial actions are already computed using the monocular
tracker described in Section 3.

Our approach to 3D face tracking is simple and can be
stated as follows: If the 3D coordinates of the 3D mesh verti-

ces at two different time instants are given in the same coordi-

nate system, then the rigid transform corresponding to the 3D
face motion can easily be estimated using a robust 3D point-

to-point registration algorithm. Without loss of generality,
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Fig. 3. The main steps of the developed robust 3D face tracker.

Fig. 4. The relative 3D face motion is recovered using a robust 3D-to-3D
registration. Both meshes are expressed in the same coordinate system and
use the same facial action parameters.
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the 3D face motion will be expressed with respect to the head
coordinate system associated with the first video frame.
Recall that upgrading this relative 3D face motion to a 3D
head pose, that is expressed in the camera coordinate sys-
tem, is carried out using the 3D head pose associated with
the first video frame. The latter transform can be inferred
using a classical 3D pose estimation algorithm. This choice
is adopted in order to obtain numerical stability for the 3D
registration algorithms. In order to invoke the registration
algorithm one has to compute the 3D coordinates of the ver-
tices associated with the two different video frames: the ini-
tial video frame and the current one (see Fig. 4). This is
carried out using stereo-based data associated with the first
frame and the current frame. The proposed algorithm can be
summarized as follows.

(1) Invoke the appearance-tracker to recover the current
3D head pose and facial actions (Section 3).

(2) Based on the estimated 3D head pose and facial
actions, deform the 3D mesh and project it onto the
current frame.

(3) Reconstruct the obtained image points—stereo
reconstruction of the mesh vertices (the current
frame).

(4) Deform the initial mesh (first frame) according to the
current estimated facial actions. Thus, the possible
non-rigid movement of the mesh is cancelled out.

(5) Eliminate the vertices that are not consistent with the
3D symmetry test. Recall that for a given person and
given facial actions the Euclidean distance between
two symmetrical vertices is invariant due to the 3D
Table 1
Recovering the relative 3D face motion using online stereo data and robust st

Random sampling: Repeat the following three steps K times
(1) Draw a random subsample of 3 different pairs of vertices. We have three

of vertex i associated with the first frame, and Si denotes the 3D coordin
in the same coordinate system

(2) For this subsample, indexed by k (k = 1, . . . ,K), compute the 3D rigid d
lation, that brings these three pairs into alignment. Rk and Tk are com
carried out using the quaternion method (Horn, 1987)

(3) For this solution Dk, compute the median Mk of the squared residual e
residuals corresponding to all vertices {Mj M Sj},j = 1, . . . ,N. The squa

Solution

(1) For each solution Dk = [RkjTk],k = 1, . . . ,K, compute the number of in
(2) Choose the solution that has the largest number of inlier vertices
(3) Refine the corresponding solution using all its inlier pairs
model symmetry. In Section 5, we will present a more
sophisticated scheme that also exploits the 3D shape
symmetry.

(6) Carry out a robust 3D registration between the two
3D meshes. The computed 3D rigid displacement cor-
responds to the actual 3D face motion between the
initial frame and the current frame. This step is
detailed in Table 1.
atistics

pairs of 3D points {Mi M Si}, i = 1,2,3. Mi denotes the 3D coordinates
ates of the same vertex with the current frame t. Mi and Si are expressed

isplacement Dk = [RkjTk], where Rk is a 3D rotation and Tk a 3D trans-
puted by minimizing the residual error

P3
i¼1jSi � RkM i � Tk j2. This is

rrors with respect to the whole set of N vertices. Note that we have N

red residual associated with an arbitrary vertex Mj is jSj-RkMj-Tkj2

liers among the entire set of vertices (see text). Let nk be this number
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Fig. 5. Top: Tracking the face and facial actions in a 300-frame sequence using the proposed tracker. Only frames 22, 179, and 255 are shown. Bottom: The
six degrees of freedom associated with the relative 3D face motion obtained with the three trackers. The dotted curves correspond to the appearance-based
tracker, the dashed ones to the proposed framework, and the solid ones to the ICP algorithm.
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As can be seen, the recovered 3D face motion has relied
on both the appearance model and the stereo-based 3D
data. Steps 4 and 5 have been introduced in order to reduce
the number of outlier vertices. Reducing the number of
outliers is very useful for obtaining a very fast robust reg-
istration in the sense that a few random samples are
needed. In step 4, the initial mesh is deformed according
to the current facial actions. Thus, a rigid registration tech-
nique can be efficiently applied. Recall that for a profile
view the vertices associated with the hidden part of the face
may have erroneous depth due to occlusion. Thus, step 5
eliminates the vertices with erroneous depth since they do
not satisfy the symmetry constraint. Note that the symme-
try test is invoked only for the cases where the face is not in
a near frontal pose (this is known from the tracked yaw
angle). Note that although the appearance-based tracker
may provide slightly inaccurate out-of-plane parameters,
the corresponding projected mesh onto the current image
is still useful for getting the current stereo-based 3D coor-
dinates of the mesh vertices (steps 2 and 3).

We stress the fact that the proposed approach is not sim-
ilar to a classical stereo-based 3D tracker where feature
points are tracked across the image sequence. In our
method, there is no feature matching and tracking across
the image sequence. Instead, the whole face appearance is
tracked in order to accurately locate the facial features
(the projection of the mesh vertices) from which the 3D
coordinates are inferred.

Robust 3D registration methods have been proposed in
recent literature (e.g., see Chetverikov et al., 2005; Fitzgib-
bon, 2003). In our work, we use a RANSAC-like technique
that computes an adaptive threshold for inlier/outlier
detection.
Fig. 6. 3D registration of two facial clouds provided at frames 1 and 39,
which are separated by a large yaw angle (about 40�). (a) the range facial
data associated to frames 1 and 39, expressed in the same coordinate
system. (b) 3D registration using the iterative closet point algorithm.
4.1. Inlier detection

The question now is: Given a subsample k and its asso-
ciated solution Dk, How do we decide whether or not an
arbitrary vertex is an inlier? In techniques dealing with
2D geometrical features (points and lines) (Fischler and
Bolles, 1981), this is achieved using the distance in the
image plane between the actual location of the feature
and its mapped location. If this distance is below a given
threshold then this feature is considered as an inlier; other-
wise, it is considered as an outlier. Here we can do the same
by manually defining a distance in 3D space. However, this
fixed selected threshold cannot accommodate all cases and
all noises. Therefore, we use an adaptive threshold distance
that is computed from the residual errors associated with
all subsamples. Our idea is to compute a robust estimation
of standard deviation of the residual errors. In the explora-
tion step, for each subsample k, the median of residuals
was computed. If we denote by M the least median among
all K medians, then a robust estimation of the standard
deviation of the residuals is given by (Rousseeuw and
Leroy, 1987):
r̂ ¼ 1:4826 1þ 5

N � 3

� � ffiffiffiffiffi
M

p
ð10Þ

where N is the number of vertices. Once r̂ is known, any
vertex j can be considered as an inlier if its residual error
satisfies jrjj < 3r̂.
4.2. Computational cost

On a 3.2 GHz PC, a non-optimized C code of the robust
3D-to-3D registration takes about 10 ms assuming that the
number of random samples K is set to 8 and the total num-
ber of the 3D mesh vertices, N, is 113. This computational
time includes both the stereo reconstruction and the robust
technique outlined in Table 1. Thus, by appending the
robust 3D-to-3D registration to the appearance-based
tracker (described in Section 3) a video frame can be pro-
cessed in about 60 ms.
5. Experimental results

We use the commercial stereo camera system Bumblebee
from Point Grey (http://www.ptgrey.com). It consists of
two Sony ICX084 color CCDs with 6 mm focal length
lenses. The monocular sequence is used by the monocular
tracker (Section 3), while the stereo sequence is used by
the 3D-to-3D registration technique (Section 4). Fig. 5
(top) shows the face and facial action tracking results asso-
ciated with a 300-frame sequence (only three frames are
shown). The tracking results were obtained using the pro-
posed framework described in Sections 3 and 4. The upper
left corner of each image shows the current appearance (lt)
and the current shape-free texture ðx̂tÞ. In this sequence, the
nominal absolute depth of the head was about 65 cm.

As can be seen, the tracking results indicate good align-
ment between the mesh model and the images. However, it
is very difficult to evaluate the accuracy of the out-of-plane
motions by only inspecting the projection of the 3D wire-
frame onto these 2D images. Therefore, we have run three

http://www.ptgrey.com
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different methods using the same video sequence. The first
method is given by the appearance-based tracker (Section
3). The second method is given by the proposed framework
(Sections 3 and 4). Note that the number of random sam-
ples used by the proposed method is set to 8. The third
method is given by the ICP registration between dense
facial surfaces where the facial surface model is set to the
one obtained with the first stereo pair (Dornaika and
Sappa, 2005). Since the ICP registration results are accu-
rate we can use them as ground-truth data for the relative
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with respect to its initial pose. This figure shows the three
angles and the three translations as a function of time.
The dotted curves correspond to the appearance-based
tracker, the dashed ones to the proposed framework, and
the solid ones to the ICP algorithm. From these curves,
we can see that the proposed framework has outperformed
the appearance-based tracker since the curves become close
to those computed by the ICP algorithm—the ground-
truth data. In this case, the first facial surface used by the
ICP algorithm contained about 20,000 3D points.
Fig. 8. A video sequence depicting a person performing
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Fig. 9. The relative 3D face motion associ
Fig. 7 shows the computed relative 3D face motions
(pitch and yaw angles) obtained with another video
sequence.

Since the ICP algorithm works with rigid surfaces, the
faces depicted in the sequences of Figs. 5 and 7 were some-
how neutral. Fig. 8 illustrates a video sequence depicting a
person performing simultaneous head motions and facial
expressions. Fig. 9 shows the computed relative 3D face
motions (the three out-of-plane parameters plus the hori-
zontal translation) associated with this sequence. For this
simultaneous head motions and facial expressions.
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ated with the video sequence of Fig. 8.



Fig. 10. The full 3D face mesh is reconstructed using both the stereo-
based data (for the best exposed half) and the symmetrical shape property
(for the other half).
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sequence, we have not used the ICP algorithm since the
facial surface undergoes a rigid and large non-rigid motion.
As can be seen, in general the motion parameters have been
improved by using online stereo data.
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Fig. 11. The relative 3D face motion associated with the
5.1. The use of a full 3D facial mesh

In this section, we propose an alternative to the use of
the symmetry test mentioned earlier (step 5—the vertex
elimination step). This scheme is also based on the shape
symmetry of the 3D face model. This scheme can work
for frames in which the face is in a profile view, and will
replace step 5 in the proposed tracking algorithm. The pro-
posed scheme synthesizes the half part of the face model
that is not well exposed to the camera using the distances
between symmetrical vertices and the orientation of the
symmetry plane. Recall that this orientation is computed
from the reconstructed vertices belonging to the symmetry
plane. In theory, since the whole 3D mesh will be used by
the 3D registration technique regardless of the face orienta-
tion, it is expected that the tracking results become more
accurate than those obtained using only the non-occluded
vertices. However, the possible inaccuracy affecting the
symmetry plane orientation might limit this advantage.
Fig. 10 illustrates the reconstruction of a full online 3D
mesh using both the stereo data and the shape symmetry.

Fig. 11 shows the tracking results associated with the
same video sequence depicted in Fig. 8 but the proposed
tracker uses the whole 3D mesh. Again, the dotted curves
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video sequence of Fig. 8 using a full 3D facial mesh.
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Fig. 12. The relative 3D face motion associated with the video sequence of Fig. 10 using a full 3D facial mesh.
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correspond to the appearance-based tracker, and the
dashed ones to the proposed framework—the New tracker.
By comparing Figs. 9 and 11, one can see that there is a
slight discrepancy associated with the yaw angle estimation
(the dashed curves), which is due to the use of two different
schemes exploiting the 3D shape symmetry. For this
sequence, the absolute depth of the subject’s face was about
65 cm.

Fig. 12 shows the tracking results associated with the
video sequence depicted in Fig. 10. For this sequence, the
absolute depth of the subject face was about 90 cm. As
can be seen, by comparing Figs. 11 and 12, the gained
accuracy provided by the proposed approach—which
incorporates stereo data—will increase as the absolute
depth increases.
6. Conclusion

In this paper, we have proposed a robust 3D face and
facial action tracker that combines the advantages of both
appearance-based trackers and 3D data-based trackers
while keeping the CPU time very close to that required
by real-time trackers. Experiments on real video sequences
indicate that the estimates of the out-of-plane motions of
the head can be considerably improved by combining a
robust 3D-to-3D registration with the appearance model.

Although the joint use of 3D facial data and the ICP
algorithm as a 3D head tracker could be attractive, the sig-
nificant computational cost of the ICP algorithm prohibits
real-time performance. Moreover, this algorithm is
intended for registering rigid objects.
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