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Abstract: This paper proposes a novel CNN architecture for the multi-thermal image super-resolution problem. In the

proposed scheme, the multi-images are synthetically generated by downsampling and slightly shifting the

given image; noise is also added to each of these synthesized images. The proposed architecture uses two

attention blocks paths to extract high-frequency details taking advantage of the large information extracted

from multiple images of the same scene. Experimental results are provided, showing the proposed scheme has

overcome the state-of-the-art approaches.

1 INTRODUCTION

Image Super-resolution (SR) is an ill-posed prob-
lem that refers to reconstructing a high-resolution
(HR) image from a single or multiple low-resolution
(LR) images of the same scene. HR images are of-
ten required as they provide supplementary informa-
tion, making it a widely studied problem with several
practical applications in domains such as: surveil-
lance and security ((Zhang et al., 2010), (Rasti et al.,
2016), (Shamsolmoali et al., 2019)), medical imag-
ing (e.g., (Mudunuri and Biswas, 2015), (Robinson
et al., 2017), (Huang et al., 2019)), object detection
(e.g., (Girshick et al., 2015)), among others; in spite
of the large amount of literature it is still an active re-
search field in the computer vision community (e.g.,
(Han et al., 2021), (Pesavento et al., 2021), (Song
et al., 2021)). In the last years, most of the SR
community has focused on the single image super-
resolution (SISR) problem, which estimates the HR
image from a single LR input. On the contrary, multi-
image super-resolution (MISR) reconstructs the orig-
inal HR image using multiple LR images of the same
scenes.

Deep learning techniques have shown remarkable
progress with respect to conventional methods, where
most state-of-the-art approaches focus on the visible
domain. Long-Wave Infra-Red (LWIR) images, a.k.a.
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thermal images, have shown the essential applications
in many fields (e.g., (Qi and Diakides, 2003), (Her-
rmann et al., 2018)); unfortunately, the technology
(thermal cameras) to acquire a higher image pixel
density is usually restrictive and overpriced. Most
thermal images tend to have poor resolution. Still,
with effective image processing techniques, such as
learning-based super-resolution methods (like those
used in the visible spectral domain), it is possible to
generate a high-resolution thermal image from a low-
resolution.

The current work tackles the thermal image super-
resolution problem in the multi-image scheme. It
requires as input several LR images from the same
scene. Hence, due to the lack of a benchmark of
multi-thermal image datasets, a dataset with synthe-
sized images is generated. This dataset contains sev-
eral LR images of a given scene by down-sampling,
adding both noise and blur, and randomly shifting (X
and Y coordinates) trying to simulate being captured
by a burst of input images. On the contrary to SISR
baseline, the main idea of the present approach is to
combine information from multiple frames to obtain
a more detailed reconstruction of the HR image. Up
to our humble knowledge, there are just a few ap-
proaches on the literature using a multi-image scheme
to generate HR thermal images.

In summary, the contributions of this manuscript
are as follows:

• It generates a synthesized dataset that simulates a
RAW burst of LR images with their corresponding
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HR ground truths.

• It proposes a novel MISR architecture for thermal
images, which generates a HR representation us-
ing bursts generated images.

• It proposes an attention-based module that helps
to merge the input images to generate the corre-
sponding SR representation.

The remainder of this manuscript is organized as
follows: Section 2 covers the related work tackled in
the current work. The proposed approach is detailed
in Section 3. Experimental results and comparisons
are provided in Section 4. Finally, conclusions are
given in Section 5.

2 RELATED WORK

This section summarizes work-related with SR, in-
cluding both SISR and MISR approaches. Section
2.1 summarizes the state-of-art on single image super-
resolution, mainly approaches proposed for images
from the visible spectrum. Then, Section 2.2 tackles
the studies related to the multi-image super-resolution
problem.

2.1 Single Image Super-Resolution

SISR techniques have been widely used in the field
of image processing with a variety of proposed meth-
ods and techniques, such as interpolation, frequency
domain, sparse representations, among others (e.g.,
(Dai et al., 2007), (Ji and Fermüller, 2008), (Yang
et al., 2010), (Freeman et al., 2002)). Recently, using
deep learning techniques with convolutional neural
networks (CNNs) has shown a great capability to im-
prove the quality of SR results. The first deep CNN-
based approach has been proposed by (Dong et al.,
2015) (SRCNN), who achieved superior results than
conventional methods, training a CNN to directly map
the input LR images to generate a SR image as their
HR counterparts. SRCNN was followed by its faster
version (FSRCNN) (Dong et al., 2016) for learning
LR to HR mapping, accelerating the testing and train-
ing need in their previous work. After SRCNN, a
number of different approaches have been proposed
with substantial improvements using more effective
network architectures (e.g., (Kim et al., 2016), (Zhang
et al., 2017), (Lim et al., 2017)) and loss functions
(e.g., (Ledig et al., 2017), (Wang et al., 2018)).

Most of the SISR approaches mentioned above
tackle images from the visible spectrum. SR ap-
proaches have also been proposed to enhance the res-
olution of images from other spectral bands, such as

near-infrared, hyper-spectral, thermal-infrared (e.g.,
(Yao et al., 2020), (Long et al., 2021), (Choi et al.,
2016)). The most recent works on thermal im-
ages SR are present in the first (Rivadeneira et al.,
2020b) and second (Rivadeneira et al., 2021) thermal
image super-resolution challenges organized on the
workshop Perception Beyond the Visible Spectrum of
CVPR2020 and CVPR2021 conferences. Both chal-
lenges use as a novel thermal dataset acquired by (Ri-
vadeneira et al., 2019). In these challenges, two kinds
of evaluations have been proposed: Evaluation1 con-
sists of down-sampling the HR thermal images by a N
factor and comparing their SR results with the corre-
sponding GT images. Evaluation2 obtains the×2 SR
from a given LR thermal image and compares it with
its corresponding semi-registered HR image. Several
teams have participated in both challenges by propos-
ing different approaches.

2.2 Multi-Image Super-Resolution

MISR aims to merge the information extracted from
multiple LR inputs images of the same scene to re-
construct a HR output. MISR techniques involve
different ways of degrading the GT image (burring,
warping, noising, shifting, downsampling) to get
several LR images. The first approach presented
on MISR (Tsai, 1984) uses frequency-domain tech-
niques, which combine the multiple LR images with
their sub-pixel displacement to enhance the spatial
resolution and generate a SR image. In (Peleg et al.,
1987) and (Irani and Peleg, 1991) an iterative back-
projection approach is introduced, which was later on
extended in (Hardie et al., 1998) with an improved
observation model and a regularization term. A joint
multi-frame demosaicking and super-resolution ap-
proach has been presented in (Farsiu et al., 2004) .
Most of MISR methods are based on sub-pixel reg-
istration between the LR images and fusion into a
super-resolved image (e.g., (Milanfar et al., 2011),
(Rossi and Frossard, 2018)).

Currently, the state-of-the-art in MISR is dom-
inated by neural networks, where their architecture
must be able to align the noisy LR inputs images with
sub-pixel accuracy to enable the fusion. Then they
should be able to fuse the information between all
aligned images. MISR problem takes more interest
due to the increasingly popular mobile burst photog-
raphy, where images have sub-pixel shifts due to hand
tremors (Wronski et al., 2019). Satellite imagery is
commonly used for MISR due to the available dataset.
In (Deudon et al., 2020) the HighRes-net network
is proposed; it aligns each input frame, from satel-
lite imagery dataset to a reference frame, and merges
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Figure 1: Proposed multi-image thermal super-resolution architecture using a 2D and 3D Attention Blocks.

them using a recursive fusion method. Similarly,
DeepSUM (Molini et al., 2019) aligns each input but
assumes just translation motion between frames and
uses 3D convolutions for fusion. In contrast to these
previous approaches, (Bhat et al., 2021) tackles the
general problem of burst SR from any mobile cam-
era. Recent works ((Salvetti et al., 2020), (Nguyen
et al., 2021)) present a multi-image super-resolution
architecture evaluating satellite images (PROBA-V),
showing that the proposed MISR strategy overcomes
state-of-the-art results.

2.3 Datasets

As SISR, most MISR approaches are focused on
the visible or near-infrared spectrum. As far as we
know, there are no approaches on multi-image super-
resolution for thermal images. It should be noticed
that in MISR it is necessary to count with multiple
LR images of the same scene. In order to overcome
this problem, datasets with synthesized images can be
used; in this case, images can be generated follow-
ing most of the degradation process applied to the GT
images together with random shifts. In other words,
datasets intended for SISR can be used to generate
such synthesized images to be used by the MISR ap-
proaches.

Regarding SISR dataset of thermal images, (Ri-
vadeneira et al., 2019) has presented a dataset in-
tended for SR, which contains a total of 101 im-
ages captured with a single HR TAU2 camera from
FLIR; each thermal image has a native resolution of
640×512 pixels. An extensive database has been
presented in (Rivadeneira et al., 2020a); it con-
sists of a set of 1021 thermal images acquired with
three different thermal cameras at different resolu-
tions (referred to as LR, MR, and HR camera). The
cameras were mounted on a panel, trying to min-
imize the baseline distance between each optical

axis camera. This dataset was used as a bench-
mark in the first and second thermal image super-
resolution challenges organized on the workshop Per-
ception Beyond the Visible Spectrum of CVPR2020
(Rivadeneira et al., 2020b) and CVPR2021 confer-
ences (Rivadeneira et al., 2021). In the current work,
the HR images of (Rivadeneira et al., 2020a) are used;
synthesized images from this dataset are generated,
simulating that the inputs were acquired in a RAW
burst of LR images—multi-LR images.

3 PROPOSED APPROACH

This section presents an overview of the approach
proposed for thermal multi-image SR. The neural net-
work (as shown in Fig. 1) takes as an input a sequence
of multiple noisy, RAW, LR thermal images and com-
bines their features to generate a SR image. Inspired
on (Salvetti et al., 2020), the current approach con-
sists of two main paths, a 2D Attention Block and
a 3D Attention Block. Both paths use Residual at-
tention blocks, which are the core of the model that
focuses on the images’ high-frequency (HF) features.
HF features have more valuable information for SR
generation. For better computational performance,
the up-sample operation is done at the end of each
path. Finally, the results from both paths are added to
generate the SR image.

The 2D Attention Path allows the network to
generate a simple super-resolution solution for up-
sampling a set of multi-LR images. This attention
path consists of: 2DConv -> ReLU -> 2DConv ->
GlobalPoll -> 2DConv -> ReLU -> 2DConv -> Sig-
moid, with respective skip connection, followed by
2DConv -> UpSampling.

The 3D Attention Path uses 3D convolutions
residual-based blocks to extract spatial correlations
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Figure 2: Illustration of the model used as degradation prepossessing.

from the pool of inputs LR images. This path is the
main branch of the approach. First, a 3D convolu-
tion layer is applied to extract shallow features from
the LR input images. After this, a cascade of N con-
catenates 3D Attention Blocks is applied for higher
extractions of features exploiting the spatial and lo-
cal, and non-local correlations. Long skip connection
is used for redundant low-frequency signals and sev-
eral short skip connections inside each block. Finally,
the up-sample operation is done. In summary, this at-
tention path consists of 12 times: 3DConv -> ReLU
-> 3DConv -> GlobalPoll -> 3DConv -> ReLU -
> 3DConv -> Sigmoid, with respective skip connec-
tion, and a long skip connection, followed by 3DConv
-> UpSampling.

The multi-image super-resolution approach can be
summarized as follow:

SR =U (2DattB(LRt))+U ([3DattB(LRt)]
N) (1)

where U represents the up-sampling operation, 2D
and 3D are each attention block paths, and N is the
number of times the 3D path repeats. LRt represents
the set of multi-image from the same scene, and SR
represents the generated super-resolution image.

4 EXPERIMENTAL RESULTS

This section presents the results of the MISR pro-
posed approach, training it on a synthesized dataset
and comparing its performance with state-of-the-art
SISR algorithms. Section 4.1 presents information of
the generated dataset; then, Section 4.2, depicts the
parameters used for the training phase. Finally, Sec-
tion 4.3, shows the quantitative and qualitative results
obtained with the proposed approach.

4.1 Synthesized Dataset

SR reconstruction is highly dependent on the degra-
dation model. Several factors such as relative motion

(handshake), atmospheric turbulence, optical blur-
ring, and preprocessing are used to generate a simu-
lated burst of multi-LR thermal images. The thermal
dataset used to evaluate the proposed model consists
of 1021 thermal images (950 for training, 50 validat-
ing, and 20 for testing). Assuming all thermal LR
images are generated under the same condition, the
degradation model can be formulated as:

Yt = (X +Gt)∗St ∗Dt ; t = 1,2, ...,T, (2)

where X , Yt represent the tth HR image and LR im-
age respectively. Gt is the additional Gauss noise to
Yt . St and Dt represents the random u and v shift and
downsampled factor by 4, respectively; ten LR im-
ages (T = 10) are generated. When random shift is
done, reflect padding is performed to fill the gap of
the shift. The degradation process is illustrated in Fig.
2. Random gauss−noise with a value of 2 std. Ran-
dom le f t− right shift ±4, up− down shift ± 3, and
bicubic−downsampled method. No rotation was ap-
ply in this degradation method.

To complete the synthesized multi-image, each T-
generated image is registered using the first image
as a reference, which has no shift. The registration
is done using an efficient sub-pixel image transla-
tion by cross-correlation to have real simulated sub-
pixel shifts with respect to each other, as it would be
generated due to, e.g., camera motion, providing dif-
ferent LR samplings of the underlying scene, regis-
tered patch examples are depicted in Fig. 3. Reflect
padding is used to complete the dismissed pixels. The
synthesized dataset is saved in npy files to be loaded
during the training process. The data format of the
images are in uinit8, and each image is normalized
between [-1,1] at the beginning, and after passing the
network, they are denormalized. No data augmenta-
tion was used.

4.2 Training

In all convolutional layers, on both paths of the net-
work 32 filters, and a kernel size of 3×3 are set. The
reduction factor in the attention blocks is set to 8. The
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Figure 3: Examples of the patch image registration process. (top− rows) represent different generated LR patches—
synthesized images. (bottom− row) show the corresponding HR image patch.

number of times that 3D Attention Block is repeated
has been set to 12 (lower value causes a loss of perfor-
mance, higher value increases the number of parame-
ters unnecessarily). In total, the network has less than
750K parameters.

For training, patches of 32×32 pixels, with an
overlap of 22 pixels, are extracted from each LR im-
age, giving more than 23K patches for training and
1.2K for validation. An initial learning rate of 0.0005
and Adam loss function optimization is used. To learn
the end-to-end mapping process, L1 and SSIM losses
are considered by minimizing their values between
the generated and the ground truth images. The pro-
posed architecture has been trained in a NVIDIA Ti-
tan X mounted in a workstation with 128GB of RAM.
Python programming language and Tensorflow 2.0 li-
brary are used. The model is trained for 50 epochs,
taking less than 24 hours.

4.3 Results

The standard fidelity based metrics PSNR and SSIM
measures are used for testing and validating the pro-
posed model, which consists in evaluating the SR
generated from the multi noisy down-sampled image
with the corresponding HR image, as shown below:

R =
1

N

N

∑
1

eval (HR,SR(LRt)) (3)

where eval is PSNR and SSIM measures metrics sep-
arately calculated, SR is the super-resolution gener-
ated image from the t multi-image LR noise inputs,
and HR represents the corresponding GT image. N is
the number of validation images.

Table 1: Results from the proposed multi-image SR ap-
proach, and state-of-the-art SISR approaches from PBVS
2021 Challenge (Rivadeneira et al., 2021).

Method PSNR SSIM

SVNIT NTNU-1 Team 30.70 0.9290
SVNIT NTNU-2 Team 30.69 0.9288

SVNIT NTNU-3 Team 30.59 0.9254

ISESL-CSIO Team 30.39 0.8992

CVS Team 29.21 0.9032

Current work 32.99 0.9236

The metrics mentioned above to evaluate the re-
sults are: i) Peak Signal-to-Noise Ratio (PSNR),
which is commonly used to measure the reconstruc-
tion quality of lossy transformations; and ii) Struc-
tural Similarity Index Metric (SSIM) (Wang et al.,
2004), which is based on the independent compar-
isons of luminance, contrast, and structure. Due to
thermal images being represented in grayscale, these
metrics can also be used.

Quantitative results obtained with the proposed ar-
chitecture are shown in Table 1, together with the
SISR results of the state-of-the-art approaches from
(Rivadeneira et al., 2021). As it can be appreci-
ated, the proposed architecture achieves a better per-
formance in PSNR with 32.99dB and is highly good
on SSIM metrics (just 0.0054 below the best re-
sults, SVNIT NTNU team achieves slightly better re-
sults). The SVNIT NTNU-1 team uses an effective
design of ResBlock, that preserves the HF details with
fewer parameters and uses channel attention mod-
ules; using an exponential linear unit (ELU) activa-
tion function to improve learning performance at each
layer in an efficient manner. The SVNIT NTNU-2
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Figure 4: SR results with a ×4 scale factor: (top− row) results from bicubic interpolation; (bottom− row) results from the
proposed approach.

team uses a cascade of convolution with Layer at-
tention which includes Residual Blocks using a self-
assemble techniques to generate the SR result. Fi-
nally, the SVNIT NTNU-3 team proposes several
residual groups to learn complex and rich features
from the LR observation, using subpixel convolutions
in the up-sampling block, with local and long skip
connections.

Qualitative comparison between bicubic interpo-
lations and results from the proposed approach are
depicted in Fig. 4. Enlarged patches are provided
for a closed inspection showing that the obtained re-
sults are sharper and less noisy than bicubic interpola-
tion. This comparison shows that using this architec-
ture to go from a multi-LR to a HR image on the ther-
mal spectrum is possible, even though the network is
trained with synthesized images.

5 CONCLUSIONS

This paper presents a novel multi-image super-
resolution architecture for thermal images, which ex-
ploits recent deep learning advancements. Two atten-
tion paths, a 2D and a 3D attentions block mecha-
nisms, are used to train the network to perform SR
at a ×4 scale. To train the proposed architecture,
synthesized RAW burst noise LR images are gener-
ated. As loss functions, L1 and SSIM are considered.
Results obtained with the proposed MISR approach
reach the state-of-the-art SISR approaches presented
in the PBVS 2021 Challenge when SSIM is consid-
ered; on the contrary, when PSNR is considered, re-
sults from the proposed approach considerably over-
come results from the state-of-the-art approaches.
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