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ABSTRACT
In this paper we propose a combination of different Haar
filter sets and Edge Orientation Histograms (EOH) in or-
der to learn a model for pedestrian detection. As we will
show, with the addition of EOH we obtain better ROCs
than using Haar filters alone. Hence, a model consist-
ing of discriminant features, selected by AdaBoost, is ap-
plied at pedestrian-sized image windows in order to per-
form the classification. Additionally, taking into account
the final application, a driver assistance system with real-
time requirements, we propose a novel stereo-based cam-
era pitch estimation to reduce the number of explored win-
dows. With this approach, the system can work in urban
roads, as will be illustrated by current results.
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1 Introduction

A main challenge of automotive industry is to develop low
cost advanced driver assistance systems (ADAS) able to in-
crease traffic safety. In this context we focus our work on
the field of pedestrian detection, which is of high relevance
taking into account that pedestrian-vehicle accidents are the
second source of automotive fatalities worldwide.

ADAS applications can be based on active sensors
like radar or lidar, but also on passive ones such as cameras
operating either in the visible spectrum or in the far infrared
(FIR) one. For pedestrian detection, passive-vision-based
approaches are quite promising [1, 2, 3, 4, 5, 6], either to
work alone or to fuse with active sensors [7].

Common difficulties for on-board vision systems
arise from dealing with a mobile platform in an outdoor
scenario, this is, variability is present everywhere: images
are acquired by a moving camera, and contain objects with
unknown movement placed at different distances in front
of a background that continuously changes both in con-
tent and spectral conditions. Hence, computer vision algo-
rithms must detect, recognize and track objects of interest
with a potentially high intra-class variability, seen from dif-
ferent angles, sizes, and different illumination/temperature
conditions. Moreover, real-time requirements usually go
from 5Hz to 25Hz, which is very challenging given the de-
gree of complexity needed to address such high variability.

In this context, pedestrian detection is one of the most
challenging problems: (1) pedestrians are non-rigid and
aspect-changing objects; (2) pedestrian detection makes
sense mainly in urban areas where, on the contrary to sce-
narios as highways, a high number of different clutter ob-
jects and backgrounds are present, sometimes leading to
situations where the pedestrian is partially occluded.

The high relevance of pedestrian detection has at-
tracted the attention of many researchers in the last decade.
For instance, in [2], a system based on a stereo pair is pre-
sented: a depth map is generated and 3D regions where
a pedestrian could fit are identified. Maximum/minimum
pedestrian sizes are assumed as well as the ground plane
location with appropriate tolerances, all depending on the
depth. Next, pedestrian classification is performed in the
2D windows corresponding to the selected 3D regions. The
classification is done by a hierarchical template matching
(coarse-to-fine) based on Chamfer distance (which needs
edge detection [1]), followed by a texture classification
done by a neural network and a final stereo verification of
the shape template. Tracking is also incorporated to discard
spurious detections. The system is able to give the distance
to the pedestrians, which is essential to know the more ap-
propriate action to take in the vehicle (do nothing, warn,
break down and deploy external airbags, etc.)

In [4, 5] the proposed system only considers a lim-
ited number of image windows assuming a flat road and a
feasible pedestrian range of sizes, then vertical symmetry
based on grey-level and horizontal gradient is used to clas-
sify the windows as possible pedestrians. However, since
there are many sources of vertical symmetry, a posterior
stereo refinement technique and other filters (no more de-
tail is given) are applied to reduce the number of false posi-
tives. Besides the stereo refinement helps to better localize
the feet of the pedestrians, thus, their distance to the cam-
era. Temporal coherence and prediction capabilities are
also added by tracking the pedestrians.

Focusing in the pedestrian classification (given an im-
age window), a widespread consensus is around the use of
example-based learning techniques based on generic image
features. For instance, [8, 9] use support vector machines
(SVM) to learn a pedestrian model based on Haar wavelets.
In [10] the authors make use of the AdaBoost algorithm
in order to learn a cascade of classifiers based on spatio-
temporal Haar wavelets (the images come from a stationary
camera). In [11], a recognition-by-components approach is
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also based on Haar wavelets and SVM learning, where the
components are relevant body parts (head, legs, arms). In
[6] the classification is based on two SVM, one for detect-
ing pedestrians in front/rear views and the other for side
views, in both cases also using the gradient magnitude of
the image as pedestrian features. In [3] the authors use
recognition-by-components too (thirteen predefined over-
lapping regions), as well as different training for different
poses, articulations and illumination conditions. The scale
invariant feature transform (SIFT) is used as image feature
and AdaBoost as learning technique. In [12] the classifi-
cation is based on a neural network that uses the gradient
magnitude of the image as pedestrian features.

In order to reduce the number of windows where
looking for pedestrians, [12] and [6] propose stereo and
constrains on the range of feasible pedestrian sizes, while
[3] proposes an attention mechanism based on texture, per-
spective constraints and size of the candidate pedestrians.

From this short review we see that in the core of
the different approaches there is an algorithm (pedestrian
classifier) such that, given an image window that approxi-
mately fits the size of a pedestrian, classifies that window
as containing a pedestrian or not according to the appear-
ance of the window’s content. Of course, with a very high
computational power we could just scan a whole image so
that at least one window has its origin at every image pixel.
However, nowadays this is fully prohibitive if we want to
reach real-time. Hence, strategies to reduce the number of
windows to examine are mandatory: a sort of background
removing together with different geometric constraints. Fi-
nally, since we can have some false positives or multiple
detections from the same pedestrian, temporal coherence
must be added by a pedestrian tracker which can be also
useful as predictor from one frame to the next.

The work presented in this paper mainly addresses the
pedestrian classification from images of the visible spec-
trum. More specifically, we focus our study on the fea-
tures that will be used to build the pedestrian classifier. The
outline of this paper is as follows. Section 2 presents two
new feature sets, with proven efficiency in face detection
[13, 14], that are combined to obtain the classifier: ex-
tended Haar wavelets and edge orientation histograms. As
other authors, we rely on AdaBoost as learning technique.
In Section 3 we outline a method to reduce the number
of pedestrian candidate windows. It is based on perspec-
tive constraints and the range of possible pedestrian sizes.
To apply these restrictions the camera’s pitch and height
must be known, however, these parameters are continu-
ously changing for a number of reasons. Other works also
suggest the use of such restrictions, however, they do not al-
ways compute dynamically the pitch and height of the cam-
era. Here, we propose a stereo-based method for dynami-
cally computing the camera’s pitch and height. In this way,
the system is open to incorporate free-space analysis in the
future with the aim of even reducing more the number of
pedestrian candidate windows. Section 4 presents experi-
mental results. In particular, we show how the combina-

tion of Haar wavelets and edge orientation histograms im-
proves the classification performance of using both types of
features separately. Notice that in the mentioned literature
on pedestrian detection the proposed classifiers either use
some kind of gradient information or Haar wavelets, but
not both of them. Besides, the presented results are based
on windows that come from the camera’s pitch and height
estimation on image sequences taken downtown from a car
in movement, therefore, when accounting for false posi-
tives we do not include easy cases like windows in the sky
(that would artificially improve any false positive metric).
Finally, Section 5 summarizes the conclusions and outlines
further improvements.

2 Pedestrian Classifier

2.1 AdaBoost Learning

From the different boosting proposals, we use Real Ad-
aBoost [15] as learning method for obtaining a pedestrian
model from a set of examples and counter-examples. The
key idea is to build a (strong) classifier by combining the
response of a set of simple (weak) classifiers, improving the
performance that a complex classifier alone would have.

In our case, the learning samples for AdaBoost con-
sist of features computed at given image rectangular re-
gions (windows). This is, we start by selecting windows
in our sequences and labeling them as pedestrians (p) or
non-pedestrians (np). The windows are chosen following
the same image sampling procedure (Section 3) that will
be used by the system when working in real-time.

Once we have a complete set of nl labeled windows,
feature values are calculated for each of them. Hence, F i =
{f1, ..., fnf

} contains the nf values of a fixed feature set
over a window i. Now the algorithm’s input consists in the
set F= {(F1, l1), ..., (Fnl

, lnl
)}, where label li∈{p, np}

indicates if window i is a pedestrian or not.
Next, in an iterative manner, AdaBoost chooses the

rule rj that best classifies the windows in the set. Rule rj

is defined as rj(F ) = {fj, tj , sj, absj , conf⊕, conf�},
where fj∈F is the used feature, tj is the threshold that
makes an optimal separation between the two classes, sj

is a sign saying if pedestrian windows are above or below
tj , absj indicates whether the threshold must be applied
to fj or to ||fj ||, and conf denotes the confidence of the
result when classifying a window as positive or negative.
This rule’s response will be a positive real value, conf⊕,
in case of a pedestrian or a negative real value, conf�, in
case of a non-pedestrian.

In the algorithm, each window has a weight depend-
ing on prior classifications; this value is increased in case
it has been missclassified by previous rules. Hence, at each
iteration, the algorithm focuses its efforts on previous miss-
classified windows. Finally, the (strong) classification rule

for n′
f features, n′

f≤nf , is DR(F ) =
∑n′

f

j=1rj(F ), where
the sign of DR provides the classification decision (pedes-
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Figure 1. Haar filters. Left: Example of a filter with para-
meters (x, y, w, h, (a), 0◦, R). Top-right: Basic forms of
the Extended Haar set. Bottom-right: Examples of filters
that give high response in regions containing pedestrians.

trian if positive, negative otherwise), and its absolute value
the confidence of that decision.

In fact, the learning process could continue until con-
structing a cascade of classification rules (as in [16] for
face detection), where the first layer discards clear non-
pedestrians, the second layer would discard less clear non-
pedestrians and so on, being pedestrians those windows
that are not rejected at any layer. However, in this paper
we are more interested in showing that the combination of
Haar wavelets and edge orientation histograms leads to bet-
ter results that each one on its own. This will be shown by
a receiver operating characteristic (ROC) curve and such
curve is easily generated if we only consider one layer.
Thus, in this paper we only present results based on training
a single layer with the Real AdaBoost algorithm.

2.2 Model Features

2.2.1 Haar Wavelets

Haar wavelet templates are introduced in [8] to detect
pedestrians using a static camera. A feature of this set is de-
fined as the difference of illumination between two defined
areas (white and black, see Fig.1 left). Here, the integral
image representation [16] is used to store the accumulated
intensity of a certain area, so summed values of a certain
region, Ek(R), can be computed efficiently by only four
accesses to that integral image. The feature value is then:

FeatureHaar(x, y, w, h, type, α, R) =
Ewhite(R) − Eblack(R) ,

where x, y is the bottom-left position of the given image
region; w, h represent rectangle’s width and height; type is
one of the configurations listed in Fig. 1 top-right, and α ∈
{0◦, 45◦}. The value of this difference can be thresholded
to be used as a weak hypothesis in our learning algorithm.

Due to perspective, the windows framing a pedestrian
can have different sizes, so normalization is required to es-
tablish an equivalence between the features computed in
each window. To achieve that, features are computed fol-
lowing the proposal in [16], obtaining results equivalent to
normalizing examples’ aspect ratio to fit an area of 12×24
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Figure 2. EOH features. The feature is defined as the re-
lation between two orientations of a region. In this case,
vertical orientations are dominant with respect to the diag-
onal orientations (k3), so the feature will have a high value.

pixels, which in our acquisition system corresponds to a
standard pedestrian at about 50m (see Section 3).

Originally, [8] presents three basic templates (filters
(a)(b)(c) in Fig.1) defining an overcomplete set covering
the whole image region. Posteriorly, Viola and Jones add
filters (d) and (e) to the previous set in order to achieve face
detection [16] and pedestrian detection using a static cam-
era [10], this set is referred in this paper as Simple Haar
set. In our work, new filters from (a) to (h) and their 45 ◦

rotation are added to the simple set, coming to use the Ex-
tended Haar set described in [13] to detect faces.

2.2.2 Edge Orientation Histograms

When looking at pedestrian images, one realises that sil-
houette, and edge information in general, can be also an
important cue apart from intensity differences between spe-
cific internal regions. In the face detection problem, Levi
and Weiss [14] propose another set of features based on
edge information, which not only maintains invariance to
global illumination changes, but also is able to extract in-
formation usually difficult to capture with Haar filters. We
expect that the richness of contour information in our im-
ages makes these features even more useful for our prob-
lem, due to the high variability of pose and texture of our
targets. Thus, we propose their use to detect pedestrians.

Features are computed as follows (see Fig. 2). First,
a Sobel mask is applied to the image in order to calculate
the edge orientation. In our case, we have used an adaptive
threshold that depends on the variance of the image, since
imposing a fixed one could supress interesting data. Then,
Sobel image pixels are classified according to its edge ori-
entation into K (in our case K = 4) images corresponding
to K predefined orientation ranges (also referred as orien-
tation bins). Therefore, a pixel in bin kn∈K contains its
gradient magnitude if its orientation is inside kn’s range,
otherwise is null. Integral images are now used to store the
accumulation image of each of the edge bins. Finally, the
feature value is defined as the relation between two orien-
tations, k1 and k2, of region R as:

FeatureEOH(x, y, w, h, k1, k2, R) =
Ek1 (R)+ε

Ek2 (R)+ε ,
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(a) (b) (c) (d)

Figure 3. Searching windows and 3D grid for user-defined vanishing lines (a, b, c) and automatically computed by [18] (d).

If this value is above a given threshold, it can be said that
orientation k1 is dominant to orientation k2 for R, which
can be exploited as a weak hypothesis too. The small value
ε is added to the factors for smoothing purposes.

3 Search Optimization

Once the system has been trained with the aforementioned
feature sets, a pedestrian search process is ready to proceed
over a given sequence of images.

3.1 Windows Generation

In our method, pedestrian size is similar to the assumed in
[4]. This is, a pedestrian is defined as a person with height
H = 1.70m and a width W = 0.85m, but we add a bigger
margin to the width, so that the information of extended
arms and walking legs is not lost. Additionally, a standard
deviation σ = 0.1m must be assumed in order to cope with
different sizes of pedestrians. Having this in mind, the nat-
ural approach to achieve detection is to apply this classifier
on all the average pedestrian sized windows over an image.
This brute-force scanning is used in several papers, for in-
stance in [8]. Therefore, such an exhaustive method would
consist in scanning the image with all the possible windows
(from the smallest one —in our case previously defined as
12×14 pixels— until the biggest), always keeping the as-
pect ratio.

3.2 Stereo-Based Pitch Estimation

In order to speed up the whole process, some authors pro-
pose to restrict the searching area at image locations deter-
mined from a priori knowledge of the current ground plane.
For instance, in [17], an initial calibration fixes a pitch an-
gle, which will be used to determine the 2D image position
of any road 3D point. Hence, a 3D grid, sampling the road
plane, is projected on the 2D image. The projected grid
nodes are used to define the bottom-left corners of search-
ing windows. In that example, to cope with pitch and height
variations, only a relatively small range of possible pitches
and heights of the camera are explored since the addressed
scenarios are highways where interframe car accelerations
and road imperfections are in general much lower than in

urban scenarios. Other works, like the pedestrian detec-
tor system described in [4], use a constant pitch/height ap-
proach in urban scenarios, which is not a realistic assump-
tion since camera pose is continuously modified.

We propose to use a stereo system for computing the
ground position and camera extrinsic parameters at each
frame so that search windows are properly adjusted. In our
case, following the proposal in [17], a 3D grid using in-
tervals of 0.5m in both X, Z axes is projected on the 2D
image plane, but now it is dynamically adjusted.

The proposed technique consists of two stages. Ini-
tially, the original 3D data points extracted from the stereo
pair (XY Z space) are mapped into a 2D space (Y Z plane).
Then, noisy data are filtered and a RANSAC based least
squares fitting is used to estimate the current road plane
parameters; at the same time camera’s position and orien-
tation are directly computed, referred to that plane. Inde-
pendently of the road geometry, the provided results could
be understood as a piecewise planar approximation, due to
the fact that road and camera parameters are continuously
computed and updated (see [18] for more details).

Fig. 3 illustrates the importance of having the right
estimation of camera’s position and orientation. Note
that every pitch angle has a corresponding vanishing line,
namely horizon, since any ground point at infinite distance
lays on this 2D image line. Thus, searching windows can
be computed by using the vanishing line value as input in-
formation. The first three image pairs show the projected
3D grid and some search windows (just some illustrative
examples are highlighted) when a fixed vanishing line is as-
sumed. Notice the problems to fix a correct horizon to cope
with all the possible road orientations. On the contrary, (d)
images present the grid and nearest windows by automati-
cally computing the vanishing line with the proposed tech-
nique. It can be appreciated that independently of the road
geometry vanishing lines are correctly computed.

4 Experimental Results

The proposed technique has been tested on different ur-
ban environments, providing good performance in differ-
ent illumination conditions and ground profiles. The vision
system is composed by a Bumblebee (www.pointgrey.com)
stereo camera, which consists of two color CCD sensors
with 6mm focal lenses, forming a baseline of 12cm. The
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Figure 4. ROCs illustrate that EOH improve the results.

images are of 640x480 pixels, and no downsampling is
made. The camera settings are not specific for pedestrian
detection since we want to base other ADAS applications
on the same images. This means that computed stereo is
set to work up to 50m while for pedestrian detection 30m
would be a useful approach (with less computational cost).
Since we have this 50m with stereo information we are cur-
rently trying to reach such distance. This means that we
evaluate about 10,000 windows per image according to the
grid we use (scanning just the half-bottom part of the image
with the 10% of the possible sizes would require 106).

Settings like shutter and gain are continuously ad-
justed by the camera to avoid saturation (this affects the
contrast, which many times is not sufficiently good).

The examples set consists of 1,000 hand-picked pos-
itive samples, i.e., pedestrians at different distance in real
urban situations (see Fig. 5) and 5,000 negative samples
including street furniture like benches, lamps, traffic lights
and signs, and also trees, vehicles and any other region not
fitting a pedestrian. Notice that examples are selected di-
rectly from the pedestrian sized grid windows, thus non-
useful windows above the horizon (e.g., containing sky) are
not used in our experiments.

Fig. 4 illustrates ROC curves for a classifier based
in 100 weak hypothesis; i.e., 100 discriminatory features,
learnt for each feature set. The curves correspond to the av-
erage of two experiments, each one with a random training
and testing set. The most relevant conclusion is that, as we
expected, the combination of two different feature sets pro-
vide better detection results with less false positives than
using a single set. This is, EOH features provide enough
complementary information to a Haar set, so detection re-
sults can be improved by using them together. On the other
hand, to better clarify if Extended Haar features provide an
appreciable improvement over the Simple set more exper-
iments are needed because according to the current ROCs,
for false positive ratios below the 1% the combination of
EOH with Extended Haar features outperforms the com-
bination with the Simple set, however, over the 1% such

40m

20m

10m

Figure 5. Pedestrians at different distances (40, 20, 10m).

improvement is not of the same relevance.
Fig. 6 shows the system results in different situa-

tions using the classifier based on the combination of Sim-
ple Haar and EOH features for a false positive ratio of the
1%. Bounding boxes highlight windows with positive clas-
sification and horizontal lines correspond to the estimated
horizon according to the automatically computed pitch.

The current code, compiled with Visual C++ 6 with
no specific software optimizations, runs at 2fps in a PIV
3.2GHz, broken down in the following timings: 50ms are
gone in the stereo computation, 200ms to estimate the
pitch, and about 250ms in the classification step.

5 Conclusion and Future Work

We have presented a system for pedestrian detection in ur-
ban environments. The study of the feature sets perfor-
mance made relevant that different Haar sets together with
Edge Orientation Histograms improve the performance of
the Simple Haar set alone when facing this problem. In ad-
dition, a stereo-based pitch-estimation technique allows us
to determine the searching area as well as a sampling grid
from where meaningful windows for applying the pedes-
trian classifier are obtained, thus, avoiding an exhaustive
search on the whole image.

As future work, we plan to improve the system by
free-space analysis, cascade of classifiers, and removing re-
dundant windows as well as spurious detections.
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Figure 6. Pedestrian detection. Some examples showing detected pedestrians, including false positives not corresponding to
our target. (Raw detection without any kind of post-processing, fixing the grid using the estimated pitch).
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