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Abstract—This paper presents a novel approach to remove
non homogeneous haze from real images. The proposed method
consists mainly of image feature extraction, haze removal, and
image reconstruction. To accomplish this challenging task, we
propose an architecture based on transformers, which have been
recently introduced and have shown great potential in different
computer vision tasks. Our model is based on the SwinIR an
image restoration architecture based on a transformer, but by
modifying the deep feature extraction module, the depth level
of the model, and by applying a combined loss function that
improves styling and adapts the model for the non-homogeneous
haze removal present in images. The obtained results prove to
be superior to those obtained by state-of-the-art models.

Index Terms—atmospheric light, brightness component, com-
putational cost, dehazing quality, haze-free image

I. INTRODUCTION

Image dehazing is a process of removing the haze from
an image, and can be done using a variety of methods. One
common method has been to use classical approaches like
a Haar wavelet transform to decompose the image into a
series of wavelets and then use a thresholding technique to
remove the haze. This method is however not very effective
in removing the haze from the given image. The goal of
dehaze is to obtain an image that appears clear and sharp.
Clear images are necessary to apply other image processing
and computer vision algorithms, like edge detection, segmen-
tation, and object recognition, just to mention a few. The
haze formulation is a simple model that simulates the effects
of atmospheric haze. Also, it assumes that the atmospheric
haze is an homogeneous medium with a uniform scattering
coefficient. A simple image haze model [1] can be expressed as
I = J(x)t(x)+A(1−t(x)); where I is the given hazy image,
J is the latent haze-free image, A is the global atmospheric
light, and t is the medium transmission map, which is based
on the dispersion coefficient of the haze and the distance of
the object from the camera [2].

Haze is caused by light scattering in the atmosphere, and can
reduce the clarity and contrast of an image. It makes the image
appear hazy and unclear. The atmospheric scattering is caused
by the existence of small particles in the air, for instance fog,
dust, water droplets, and smoke. These small particles in the
air scatter the light in the atmosphere and reduce the amount
of light that reaches the camera sensor [3]. Also, haze can
cause a loss of contrast and color saturation in an image, as
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well as a reduction in overall clarity. Also in many cases, haze
can completely obscure an image.

Recently, techniques for removing haze from images have
been made using a convolutional neural network (CNN), which
has proved to be very effective to remove haze from images
[4]. CCN approaches are much more precise than the Haar
wavelet transform-based methods and can remove the haze
from the image without losing any of the details in the image.
Although CCN networks are still booming, many authors
have started transformer-based models, because these networks
allow modeling data with high dependence on input using
values large receptive fields [5]. Additionally, these models
support parallel processing and multiple data modalities (e.g.,
images, video, text, and voice). Transformer architectures are
based on a self-service mechanism, which allows the model
to service different positions of the integrated linear input
simultaneously.

The contribution of this paper can be pointed out in:
• The usage of Charbonnier Loss [6] to enhance image

reconstruction during the haze removal process. This
loss is most robust than l1 or l2 loss because it is less
sensitive to outliers values and helps to incorporate more
image details in the resulting haze-free image. In our
approach, we combine this loss with structure similarity
and adversarial loss.

• The modification of the attention mechanism of the
encoder to extract not only the information based on
pixels but also the spatial information, considering that
the haze present in the images is non homogeneous.

The manuscript is organized as follows. Section II presents
works related to the haze removal problem and some basic
concepts of transformer networks. Section III presents the
proposed haze removal architecture. Experimental results and
comparisons with different implementations are given in Sec-
tion IV. Finally, conclusions are presented in Section V.

II. RELATED WORD

Several approaches for image dehazing have been proposed
in the last decade, some of them are based on classical
approaches, like those related to the estimation of map of
transmission and atmospheric light [7], [8], [9]. Another
classical technique related to fast visibility restoration has been
presented by Fattal et al. [10], where the authors propose a
color-line method based on the distribution often presented
in real images showing regularity in image regions’ pixels.



Another method proposed to improve the visibility of night
haze is based on the use of synthetic night scenes guided
by clear images, from which the spatial information, light,
and reflectance are extracted to generate the haze effects [11].
Another well-known classical approach to remove haze is by
using as a prior the dark channel [12]. In Berman et al. the
authors propose an algorithm based on a new non-local prior
since the degradation is non homogeneous on each pixel and
changes according to the distance the camera sensor from the
scene [8]. Continuing with the methods for estimating atmo-
spheric light, in [13] a method for haze removal is presented.
This method is based on the linear transformation expressing
that a linear relation exists in the minimum channel between
the haze and its corresponding clear image. Also, the average
gray values of the pixels and the local gradients are used as
evaluation criteria for the estimation of the transmission map.
This focuses on the brightest areas of distortion to solve the
haze removal problem.

There are some proposals based on the minimization of
energy functions, for example in Galdran et al. [14] the authors
propose the optimization of energy functions fused together to
remove the haze present in an image. With this method, the
authors introduce a method to enhance the contrast and satura-
tion of the haze image while maintaining spatiality congruence
in the image.In [15] The authors propose a method to remove
haze based on ellipsoids generated based on statistical data
such as the mean and variance of the pixels corresponding to
the regions with haze. Another classical method to address the
problem of image degradation in foggy weather is proposed
by Wang et al. [16]. It is a technique based on a physical
model and a multiscale retinex that works with the brightness
components to restore the colors of the image. The method
considers three components, the calculation of the atmospheric
light, the radiation of the foggy scene, and the estimation of
the transmission map taking into account the dynamic range of
the image to include more accurately the details of the scenes.

Most recent approaches are based on the usage of Convo-
lutional Neural Networks (CNN), for instance, in Engin et al.
[17] the authors propose a cyclic GAN model that performs
domain transfer between unmatched images. It uses the well-
known contextual and consistency losses to extract the haze-
free regions of the images and combine them with the texture
information of the light images to obtain the haze-free images.
In [18] the authors present an adaptive deep convolutional
network that removes haze using a light contrastive regularizer.

In [19] the authors present a trained end-to-end network that
is responsible for estimating the average transmission maps.
With the estimated map applying the atmospheric dispersion
model, the haze-free image is obtained. This network, called
DehazeNet applies layer design to generate feature maps with
the most relevant information on haze images. Additionally,
an activation function called bilateral rectified linear unit is
proposed in this work. With this new activation function, the
quality of the generated clear image is improved. Another
CNN-based approach has been proposed by Ren et al. [2]
to perform the mapping of the information domain between

images with haze and its corresponding transmission map. The
prediction of the transmission map performed by the model
is combined with a refinement process that works by local
regions in the images.

Although the CCN networks still present good results in
their recently proposed techniques. Also at the same time,
techniques based on transformer networks have appeared.
Researchers have shown interest since this type of network can
be considered general purpose. These models support parallel
data processing, thus creating efficient blocks to transform
information. One of the approaches of this type of models
are those related to computer vision that have obtained better
results and specialize in the implementation of attention and
data modules [20]. With this model scaling, the relationship
between the error rate of the data and their corresponding
calculations can be established. This allows the architecture
to reduce memory consumption and increase the accuracy of
the resulting models. There is also the class of transformer
networks that are dedicated to spatial dimension conversion
and its effectiveness. These techniques focus on the reduction
of spatial dimension applied to a transformer architecture. The
reduction is designed based on a grouping (PiT) Pooling-based
Vision Transformer, on the original ViT (Vision Transformer)
model. This grouping manages to improve generalization for
image classification and/or object detection tasks [21]. Another
transformer model adapted for computer vision is presented in
Liu et al. [22], where the authors introduce a general purpose
network called Swin transformer. This technique is challenging
due to the great diversity of resolution present on the images,
as well as the different scales of the images. For which,
local compensation windows are used that avoid overlapping
and represent a hierarchical transformer model. This model
will vary in complexity depending on the size of the image.
This architecture is well suited to solve computer vision
problems, such as image classification, object detection, and
semantic segmentation. In Liang et al. [23] a model to restore
images based on the Swin Transformer network is proposed.
Image restoration is performed in three steps: surface feature
extraction, deep feature extraction, and actual reconstruction.
Swin transformer blocks with a residual connection are used
for the extraction of the most relevant characteristics. This
model has been also evaluated for reconstruction tasks, image
noise reduction, and JPEG compression artifact reduction.

III. PROPOSED APPROACH

Removing a non-homogeneous haze present in an image
is a complex challenge since the distribution of the existing
particles in the air is not always the same. Therefore, the
model that is designed cannot assume an homogeneous global
removal of the haze. The feature extractor should consider this
pattern when obtaining the most relevant features.

Considering the aforementioned problem, in the present
work a modified transformer network is proposed, based on the
SwinIR [23] model see Fig. 1. The changes implemented starts
with the addition of more levels of self-service headers. The
limits of the activation function in the Multilayer Perceptron
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Fig. 1. Proposed image dehaze transformer based model.
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Fig. 2. Attention module.

(MLP) layer have also been modified. With the proposed
changes, the construction of the feature maps will allow mul-
tiple resolution so that they can converge on sharper and more
precise regions. In addition, the modifications implemented in
the construction of the embedded vectors manage to capture
the order relationships between patches (spatial information).
This is crucial in a haze removal process as spatial smoothing
is provided to the extracted descriptors in the model.

Additionally, our transformer encoder has been modified
to enhance the low-level task of removing non-homogeneous
haze, because our self-attention mechanism has a behavior
restricted to learning the interplay across local regions on the
images with haze and are more robust against data corruptions,
image occlusions, and high-frequency noises.

According to Vaswani et al. [5], the scaled dot product
attention is an attention mechanism where a set of embedded
inputs named queries Q, keys K of dimension dk, and values
V of dimension dv. simultaneously packed into arrays Q, K
and V respectively are scaled down by

√
dk. The function can

be formulated as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

The outputs of the vectors of keys, queries and values
will be processed by a parallel attention method, generating
multiple dimensional outputs according to the corresponding
vectors inputs. All these outputs are then grouped and pro-
jected to obtain the definitive results.

Multi-head attention allows the model to jointly attend to
information from different representation subspaces at differ-
ent positions. With a single attention head, averaging inhibits
this

MultiHead(Q,K, V ) = Concat (head1, . . . ,headh)W
O

where headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
(2)

where the projections are parameter matrices WQ
i ∈

Rdmodel ×dk ,WK
i ∈ Rdmodel ×dk ,WV

i ∈ Rdmodel ×dv and WO ∈
Rhdv×dmodel

In our model, we have modified the input embedding to en-
hance the attention map. This is one of the components of the
self-attended feature map. The encoder will receive projections
of queries Q, keys K and values V with their corresponding
spatial information aggregated. First, we divide each image
into patches, then each patch is flattened to generate lower-
dimensional linear embeddings to reduce dimensionality. Our
contribution is to add to each patch, its corresponding most
relevant spatial information patch. The objective is to generate
a map that contains the interspatial relationship extracted
from the features of each image patch. This additional spatial
information will be added to input vectors previous to generate
linear embedding input of the transformer encoding. Figure 2
show the spatial attention implementation.

To obtain the spatial information, average and maximum
grouping operations are applied to each image feature vector



for each channel of the patch. The outputs of these grouping
operations are then concatenated. The main idea is to use
them as feature descriptors. Next, a convolution is performed
over the obtained descriptors, resulting in the sought spatial
attention map [24].

The spatial attention map is obtained as follows:

SMap(P) = δ
(
fcts×s([AvgPool(P);MaxPool(P)])

)
= δ

(
fctsg×sg ([Pavg smap;Pmaxsmap])

)
,

(3)

the sigmoid function represented by δ and the pooling opera-
tion denoted by (fctsg×sg), where fs × fs is the filter size.

Additionally, in our research, the use of multiple losses is
proposed. In order to enhance the quality of the generated
hazy free image. Futhermore, in order to optimize the learning
process and accelerate the model generalization, this multiple
loss can be defined as;

Lmultiple = α×LCharbonier +β× (1− LSSIM )+λ×LIdentity

(4)
where LChar is the is the Charbonnier loss [6], (1− LSSIM )
is the negative structure similarity loss and LIde is the identity
loss.

The α, β and λ loss coefficients are set to 0.4, 6, and 0.65,
respectively; these values have been empirically obtained.

The Charbonier loss has been used to compute the pixel
loss between the predicted image and the ground truth:

LCharbonier =

√
∥XS − Y ∥2 + ε2 (5)

where Y represents the ground-truth image, XS is the hazy
free image obtained from the last layer of the generator. ϵ
is the region for which the loss function changes from being
approximately quadratic to approximately linear, and for our
model, this parameter was set to 0.00016.

Also, the loss known as structural similarity [25] LSSIM

is used to evaluate whether the content of two images have
structural correspondence. It helps to evaluate changes in
local structures, since the human visual perception system is
sensitive to these changes. The idea behind this loss function
is to help the learning model to obtain an enhanced image.
This loss can be expressed as:

−LSSIM = −SSIM (Xs, Y ) . (6)

where Y represents the ground-truth image, XS is the hazy
free image obtained from the last layer of the generator.

Finally, the identity loss evaluates whether the generated
haze-free image matches the target clear image. That is, they
share the same data domain and do not degrade the pixel
intensity levels of the resulting haze-free image, and the
mathematical expression can be expressed as:

LIdentity = LIdentity (YS , Y ) , (7)

where Ys is the prediction result obtained by inputting the Y
hazy image into the network.

Also, in this paper we use h = 8 parallel attention layers,
to enhance the global feature extractor. For each of these we
use dk = dv = dmodel /h = 32.

TABLE I
RESULTS FROM THE VALIDATION DATASETS (NH-HAZE 2020/2021).

BEST RESULTS IN BOLD, AND SECOND BEST UNDERLINED.

Approaches NH-Haze 2020 NH-Haze 2021
PSNR SSIM PSNR SSIM

SwinIR+L1 17.3552 0.5473 17.1163 0.7044
SwinIR+LCharbonier 17.9170 0.6065 19.4660 0.8000
Ours+LCharbonier 17.5055 0.5695 17.9842 0.7520
Ours+LMultiple 18.4038 0.6371 20.1259 0.8273

IV. EXPERIMENTAL RESULTS

This section firstly describes the data set that has been used
to validate the proposed approach. Then, training settings de-
tails are provides. Finally, results from the proposed approach
and comparisons with state of the art technique are provided,
both quantitative and qualitative.

A. Datasets

A non homogeneous realistic dataset has been used to
evaluate the proposed approach. It contains pairs of real hazy
and free haze images introduced by Ancuti et al. [26]. This
dataset has been used in the NTIRE 2020 dehazing challenge
and the extended version used in NTIRE 2021 dehazing
challenge. The dataset contains 55 and 25 pairs of images
respectively with their corresponding haze-free images. A set
of 5 images has been selected from each dataset, NH-Haze
2020 and NH-Haze 2021. These images have been used to
compute the metrics to evaluate results. To carry out the
experiments, from the total of 80 image pairs, 60 pairs were
selected for the training, 10 images have been used for testing,
and the other 10 for validation.

B. Pre-Procesing and Training Settings

For transformer-based approaches, especially those related
to computer vision, tokenization is used as a pre-process of
the dataset. For this pre-processing we have divided the input
images into regions with a size of 32 × 32. These regions are
referred to as visual tokens, which are embedded in vectors
of predetermined fixed dimension. The patch position is also
embedded along with the image regions. These embedded
vectors will be the input of the transformer model. For our
paper, we have added an embedded vector that contains the
most representative spatial information of each patch. With
this information the model feature extractor can improve
the quality of the generated haze-free images. Additionally,
the model uses an initial learning rate of 0.00028 and ends
with a value of 0.00017 when reaching local loss minimum
values. For the training, we use Adam optimizer, β1 and β2

are initialized with 0.92 and 0.98, respectively. Quantitative
evaluation is performed with PSNR and SSIM.
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Fig. 3. Experimental results: 1st. row depicts input images; 2nd. to 3th. rows show results of state-of-the-art approaches; 4th. row shows results of the
proposed approach with Charbonier Loss; 5th. row shows results of the proposed approach with Multiple Loss; 6th. row shows ground truth images from
NH-Haze 2020.

C. Comparisons

The proposed approach has been evaluated and compared
with the original model based on Swin et al. The experiments
carried out include the validation of the original model with the
loss L1 and Charbonier. On the other hand, our approach for
comparison purposes has been validated with the Charbonier
loss and the proposed multiple loss. The table I presents
the results obtained from all approaches. Figures 3 and 4
show qualitative results with all the approaches evaluated
with the field images. The proposed approach presents better
results with respect to the others. Results of the 5 images in
the NTIRE 2021 haze removal challenge validation set are
provided in Figure 5.

V. CONCLUSIONS

Techniques based on transformer networks are lately achiev-
ing results that improve the state of the art techniques based
solely on convolutional neural networks. In our paper, we have
proposed to improve the spatial self-attention mechanism to
make the haze removal process more efficient and enhance
the quality of the generated hazy free images. The model
used is the SwinIR, and with the contribution made, the input
data will not only be the patches and their relative position,
but also the most representative spatial information. With this
additional information, the feature extractor will have the high-
level pixels necessary to remove the haze more efficiently.
The best results in haze-free image quality with the proposed
approach validate the effectiveness of the model. As a future
work, it is thought to improve the Swin transformer self-
attention mechanism, to incorporate residual information by
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Fig. 4. Experimental results: 1st. row depicts input images; 2nd. to 3th. rows show results of state-of-the-art approaches; 4th. row shows results of the
proposed approach with Charbonier Loss; 5th. row shows results of the proposed approach with Multiple Loss; 6th. row shows ground truth images from
NH-Haze 2021.

channel and space that improves the score obtained by the
encoder and decoder of the transformer-based model.
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