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Abstract. This paper presents an efficient technique for linking edge
points in order to generate a closed contour representation. The original
intensity image, as well as its corresponding edge map, are assumed to
be given as input to the algorithm (i.e., an edge map is previously com-
puted by some of the classical edge detector algorithms). The proposed
technique consists of two stages. The first stage computes an initial rep-
resentation by connecting edge points according to a global measure. It
relies on the use of graph theory. Spurious edge points are removed by a
morphological filter. The second stage finally generates closed contours,
linking unconnected edges, by using a local cost function. Experimental
results with different intensity images are presented.3
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1 Introduction

Edge detection is the first and most important stage of human visual process
as presented in [1]. During last decades several edge point detection algorithms
were proposed. In general, these algorithms are based on partial derivatives (first
and second derivative operators) of a given image. Unfortunately, computed edge
maps usually contain gaps as well as false edge points generated by noisy data.
Moreover, edge points alone generally do not provide meaningful information
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about the image content, so a high-level structure is required (e.g., to be used
by scene understanding algorithms). From a given edge map the most direct
high-level representation consists in computing closed contours—linking edge
points by proximity, similarity, continuation, closure and symmetry. Something
that is very simple and almost a trivial action for the human being, becomes a
difficult task when it should be automatically performed.

Different techniques have been presented for linking edge points in order to
recover closed contours. According to the way edge map information is used they
can be divided into two categories: a) local approaches, which work over every
single edge point, and b) global approaches, which work over the whole edge map
at the same time. Alternatively, algorithms that combine both approaches or use
not only edge map information but also enclosed information (e.g., color) can be
found (e.g., [2], [3]). In general, most of the techniques based on local information
rely on morphological operators applied over edge points. Former works on edge
linking by using morphological operators compute closed boundaries by thinning
current edge points [4]. However, common problems of thinning algorithms are
that in general they distort the shape of the objects, as well as big gaps can not
be properly closed. In order to avoid these problems [5] introduces the use of
morphological operators together with chamfer maps. Experimental results with
simple synthetic-like images with closely spaced unconnected edges, which do
not contain spurious neither noisy edge points, are presented.

A real-time edge-linking algorithm and its VLSI architecture, capable of pro-
ducing binary edge maps at the video rate, is presented in [6]. It is based on local
information and, as stated by the authors, has two major limitations. Firstly, it
does not guarantee to produce closed contours, actually in every experimental
results presented in that paper there are open contours. Secondly, edge-linking
process is sensitive to user defined parameters—threshold values.

In [7], a more elaborated edge linking approach, based only on local informa-
tion, is proposed. Initially, an iterative edge thinning is applied. Thus, small gaps
are filled and endpoints are easily recovered and labelled. Finally, endpoints are
linked by minimizing a cost function based on a local knowledge. The proposed
cost function takes into account the Euclidean distance between the edge points
to be linked (2D distance) and two reward coefficients—a) if the points to be
linked are both endpoints; and b) if the direction associated to the points to be
linked is opposite. The values of these two reward coefficients are experimentally
determined. Since this technique is proposed for linking points, similarly to [6],
it does not guarantee to produce closed contours.

Differently to previous approaches, algorithms based on global information
need to study the whole edge point distribution at the same time. In general,
points are represented as nodes in a graph and the edge linking problem is solved
by minimizing some global measure. For instance, [8] presents an edge linking
scheme as a graph search problem. A similar scheme was previously introduced in
[9]. The methodology consists in associating to every edge point its correspond-
ing gradient—magnitude and direction. Thus, the initial edge map becomes a
graph with arcs between nodes ideally unveiling the contour directions. A search

- 552 -�



algorithm, such as A∗, is later on used for finding the best path among the edge
points. Although results presented in [8] are promising, the excessive CPU time
together with the large number of image dependent parameters, which have to
be tuned by the user, discourage its use.

In [10] a fast and free of user-defined parameters technique, which combines
global and local information, is presented. It is close related to the previous ap-
proaches ([8], [9]), in the sense that graph theory is also used to compute the best
set of connections that interrelate edge points. Differently to the previous ones,
it is devised to generate closed contours from range image’s edge points, instead
of classical intensity images. Initially, edge points are linked by minimizing a
global cost function. At the same time, noisy data are easily removed by means
of an efficient morphological filter. It does not have to go through the whole list
of points contained in the input edge map, but only over those points labelled
as endpoints—points linked once. In a second stage, closed contours are finally
obtained by linking endpoints using a local cost function.

In the current work, we propose to adapt [10] in order to process intensity
images. Range image processing techniques can be customized to work with 2D
images considering intensity values as depth values. For instance, mesh modelling
algorithms, developed for representing 3D images, have been extended to the 2D
image field for different applications (e.g., [11], [12], [13]). In the same way, we
propose to adapt the contour closure technique presented in [10] in order to
handle intensity images.

The remainder of this paper is organized as follow. Section 2 briefly intro-
duces the technique proposed in [10] together with the required changes to face
up intensity images. Experimental results with several images are presented in
Section 3. Finally, conclusions and further improvements are given in Section 4.

2 Proposed Technique

Let I be a 2D array representing an intensity image with R rows and C columns,
where each array element I(r, c) is a value defined as 0 ≤ I(r, c) ≤ 255. In order
to have a direct application of the approach proposed in [10], intensity values are
considered as depth values; so every pixel in I(r, c) becomes a point in 3D space:
(x, y, z) = (r, c, I(r, c)). Let E be the corresponding edge map computed by an
edge point detector algorithm. Each element of E(r, c) is a boolean indicating
whether the corresponding image pixel is an edge point or not. In the current
implementation edge maps were computed by using Canny edge detector [14].
Additionally, edge points uniformly distributed through the first and last rows
and columns were added. Added edge points are useful for detecting a region
boundary when it touch an image’s border; actually, the idea of imposing edge
points through the image border has already been used in [15].

Assuming both arrays, I and E (see Fig. 1), are given as inputs the proposed
technique consists of two stages. The first stage links edge points by minimizing
a global measure. Computed connections are later on filtered by means of a
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morphological operator. The second stage works locally and is only focussed on
points labelled as endpoints. Both stages are further described below.

Fig. 1. (left) Input intensity image, I. (right) Input edge map, E, computed by Canny.

2.1 Global Scheme: Graph Based Linking

At this stage a single polyline that links all the input edge points, by minimizing
the sum of linking costs, is computed. On the contrary to [7], where a linking
cost considering the Euclidean distance in the edge map is used (distance in a
2D space), we propose to use also the Euclidean distance but in the 3D space.
Neighbor points in the edge map could belong to different regions in the intensity
image. In other words, using only point positions in the edge map could drive
to wrong results. Therefore, linking cost between edge points (E(i,j), E(u,v)) is
defined as:

LC(i,j),(u,v) = ‖(i, j, I(i, j))− (u, v, I(u, v))‖ (1)

In order to speed up further processing, a partially connected graph Γ is
computed, instead of working with a fully connected one. Since this partially
connected graph should link nearest neighbor edge points, a 2D Delaunay tri-
angulation of the edge map’s points is computed. Additionally, every edge is
associated with a cost value computed as indicated above, LC(i,j),(u,v).

Finally, the shortest path in Γ that links all the edge points is extracted
by computing the Minimum Spanning Tree (MST) of Γ . The MST of Γ is the
acyclic subgraph of Γ that contains all the nodes and such that the sum of the
costs associated with its edges is minimum. Notice that the MST of the Delaunay
triangulated input edge points gives the same result than if it were computed
over a fully connected graph of those points.

Fig. 2(top) shows the triangular mesh and its corresponding MST, computed
from Fig. 1; input edge map, Fig. 1(right), contains edge points computed by
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the edge detector [14], as well as edge points added over the first and last rows
and columns. As can be appreciated in Fig. 2(top − right), the resulting MST
contains short branches—branches defined by a few edges—, connected with
the main path. They belong to information redundancy and noisy data. So,
before finishing this global approach stage, and taking advantage of edge point
connections structured as a single polyline, a morphological filter is applied.
The filter is a kind of opening algorithm and consists in performing iteratively
erosions followed by the corresponding dilations; the latter applied as many times
as the erosion. In brief, the opening algorithm considers segments of the polyline
as basic processing elements (like pixels in an intensity image). From the polyline
computed by the MST, those segments linked from only one of their defining
points—referred as end segments—are removed during the erosion stage. After
ending the erosion process, dilations are carried out over end segments left. More
details about this filtering process can be found in [10].

2.2 Local Scheme: Cost Based Closure

The outcome of the previous stage is a single polyline going through almost
all edge points (some edge points were removed during the last filtering stage).
Fig. 2(bottom− left) presents the result obtained after filtering the MST of Fig.
2(top − right). Notice that although this polyline connects edge points it does
not define closed contours—recall that the MST is an acyclic subgraph so that it
does not contain any closed contours. Therefore, the objective at this last stage
focuses on closing open contours.

Open contours are characterized by edge points linked once—endpoints. Since
the previous filtering stage was carried out over end segments, endpoints are
easily identified; there is no need to go through the whole list of edge points to
find those only linked once. For every endpoint a list of candidate points from
the edge map E is extracted. Finally, the point with a minimum closure cost is
chosen to close the given endpoint. These stages are detailed below.

Given an end point E(i, j), its set of candidate edge points is selected by
means of an iterative process over a dynamic window, DW , centered at that
point—DW(i±m,j±n), where m = {1, . . . , t}; n = {1, . . . , t}; t = s + τ ; and
{(s < m < t) ∨ (s < n < t)}. During the first iteration s is set to zero. Then
after each iteration it is increased by τ . The threshold τ depends on the density
of edge points in the given edge map; in the current implementation τ was set
to four.

After extracting the set of candidate points from the current iteration, a
closure cost, CC, is computed. It represents the cost of connecting each one of
those candidates with the given endpoint E(i, j). It is computed according to
the following expression:

CC(i,j),(u,v) =
LC(i,j),(u,v)

PathLength(i,j),(u,v)
(2)

LC(i,j),(u,v) is the linking cost defined in (1), which represents the 3D distance
between the points to be linked; while PathLength(i,j),(u,v) measure the length
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Fig. 2. (top−left) Triangular mesh of the edge points presented in Fig. 1(right). (top−
right) Minimum spanning tree. (bottom − left) Filtered MST—opening algorithm.
(bottom− right) Final linked edge point representation.

of the path—number of edges—linking those two points. In case of no candidate
points were extracted from the current window or PathLength(i,j),(u,v) values
from those candidates to the given endpoint were equal or smaller than t, the
size of DW is increased by τ , so that s and t, and the process starts again by
extracting a new set of candidate points. The new set of candidate points does
not contain those previously studied due to the fact that the new window is only
defined by the outside band. Otherwise, the point with lowest closure cost is
chosen to be linked with the endpoint E(i, j).

3 Experimental Results

The proposed technique has been tested with different intensity images. As men-
tioned above, in all the cases edge maps were computed by using Canny edge
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detector [14]. Additionally, a set of edge points uniformly distributed over the
image border (first and last rows and columns) was added. The CPU time to
compute the different stages have been measured on a 1.86 GHz Pentium M PC
with a non-optimized C code.

Fig. 3. (top − left) Input edge points, 21393 points. (top − right) Triangular mesh.
(bottom − left) Minimum spanning tree, 21392 edges. (bottom − right) Final closed
contour representation (after filtering the MST and closing open boundaries), 18517
edges.

The illustrations used through the paper correspond to an intensity image
of 256×256 pixels (Fig. 1(left)) and an edge map defined by 4784 points (Fig.
1(right)); its MST contains 4783 edges and was computed in 0.56 sec (Fig.
2(top − right)). The opening algorithm filters 378 edges from the computed
MST giving rise to a representation with 4405 edges in 0.03 sec (Fig. 2(bottom−
left)). The 378 removed edges correspond to those ones linked with noisy data
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or redundant edge points. Finally, 52 open contours are closed in 0.05 sec. This
final representation contains 4457 edges, Fig. 2(bottom− right)

Other images were processed with the proposed approach. Fig. 3(top− left)
presents the input edge map, 21393 points, corresponding to an image of 512×512
pixels. Intermediate results, such as Delaunay triangulation of input edge points
and its MST, are also presented in Fig. 3. The MST is defined by 21392 edges.
The final closed contour representation is presented in Fig. 3(bottom − right);
it contains 18517 edges and was computed in 28.4 sec. Have a look at those
gaps on the shoulder and top of the hat that are successfully closed in the final
representation.

Finally, Fig. 4(top) shows edge maps defined by 6387 and 34827 points re-
spectively; the corresponding intensity images are defined by 256×256 pixels
(girl) and 512×512 pixels (car). The results from the global approach stage
are presented in Fig. 4(middle)—filtered MST. Final results are given in Fig.
4(bottom); they are defined by 5052 and 27257 edges respectively. Information
regarding CPU time for the different examples are presented in Tab. 1. As can be
appreciated in all the examples about 85% of the time is spent by the triangular
mesh and MST generation. Since a non-optimized C code is used, it is supposed
that there is a room for improvement.

Table 1. CPU time (sec)

Global Scheme Local Scheme Total
Triangular Mesh Filtering Contour Closure Time

and MST Generation

House 0.56 0.03 0.05 0.65

Lenna 23.9 0.76 3.74 28.41

Car 80.43 2.35 11.67 94.46

Girl 0.98 0.07 0.13 1.19

4 Conclusions and Further Improvements

This paper presents the use of global and local schemes for computing closed
contours from edge points of intensity images. The global stage is based on graph
theory while the local one relies on values computed by a local cost function.
Noisy and redundant edge points are removed by means of an efficient morpho-
logical operator. Although this approach has been initially proposed to handle
range images, experimental results proved that it is also useful for processing
intensity images.

Further work will be focused on improving MST generation, for instance by
generating it at the same time that the triangular mesh. Additionally, the devel-
opment of new linking cost and closure cost functions, specifically designed for
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Fig. 4. (top) Input edge points (6387 and 34827 points). (middle) Filtered MST (4964
and 26689 edges). (bottom) Final closed contour representation (5052 and 27257 edges).
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handling intensity images, will be considered. It is supposed that cost functions
that take into account information such as color of pixels crossed by the graph
edges could improve the final results. Finally, comparisons with other approaches
will be done.
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