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Abstract The manuscript evaluates the performance of a monocular visual odome-
try approach when images from different spectra are considered, both independently
and fused. The objective behind this evaluation is to analyze if classical approaches
can be improved when the given images, which are from different spectra, are fused
and represented in new domains. The images in these new domains should have
some of the following properties: i) more robust to noisy data; i i) less sensitive to
changes (e.g., lighting); i i i) more rich in descriptive information, among other. In
particular in the current work two different image fusion strategies are considered.
Firstly, images from the visible and thermal spectrum are fused using a Discrete
Wavelet Transform (DWT) approach. Secondly, a monochrome threshold strategy
is considered. The obtained representations are evaluated under a visual odometry
framework, highlighting their advantages and disadvantages, using different urban
and semi-urban scenarios. Comparisons with both monocular-visible spectrum and
monocular-infrared spectrum, are also provided showing the validity of the proposed
approach.
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1 Introduction

Recent advances in imaging sensors allow the usage of cameras at different spectral
bands to tackle classical computer vision problems. As an example of such emerg-
ing field we can mention the pedestrian detection systems for driving assistance.
Although classically they have relied only in the visible spectrum [1], recently some
multispectral approaches have been proposed in the literature [2] showing advan-
tages. The same trend can be appreciated in other computer vision applications such
as 3D modeling (e.g., [3], [4]), video-surveillance (e.g., [5], [6]) or visual odometry,
which is the focus of the current work.

Visual Odometry (VO) is the process of estimating the egomotion of an agent
(e.g., vehicle, human or a robot) using only the input of a single or multiple cameras
attached to it. This term has been proposed by Nister [7] in 2004; it has been chosen
for its similarity to wheel odometry, which incrementally estimates the motion of
a vehicle by integrating the number of turns of its wheels over time. Similarly, VO
operates by incrementally estimating the pose of the vehicle by analyzing the changes
induced by the motion to the images of the onboard vision system.

State of the art VO approaches are based on monocular or stereo vision systems;
most of them working with cameras in the visible spectrum (e.g., [8], [9], [10], [11]).
The approaches proposed in the literature can be coarsely classified into: feature
based methods, image based methods and hybrid methods. The feature based meth-
ods rely on visual features extracted from the given images (e.g., corners, edges)
that are matched between consecutive frames to estimate the egomotion. On the
contrary to feature based methods, the image based approaches directly estimate
the motion by minimizing the intensity error between consecutive images. Gener-
alizations to the 3D domain has been also proposed in the literature [12]. Finally,
hybrid methods are based on a combination of the approaches mentioned before
to reach a more robust solution. All the VO approaches based on visible sepctrum
imaging, in addition to their own limitation, have those related with the nature of the
images (i.e., photometry). Having in mind these limitations (i.e., noise, sensitivity
to lighting changes, etc.) monocular and stereo vision based VO approaches, using
cameras in the infrared spectrum, have been proposed (e.g., [13], [14]) and more
recently cross-spectral stereo based approaches have been also introduced [15]. The
current work proposes a step further by tackling the monocular vision odometry with
an image resulting from the fusion of a cross-spectral imaging device. In this way
the strengths of each band are considered and the objective is to evaluate whether
classical approaches can be improved by using images from this new domain.

The manuscript is organized as follow. Section 2 introduces the image fusion
techniques evaluated in the current work together with the monocular visual odometry
algorithm used as a refernce. Experimental results and comparisons are provided in
Section 3. Finally, conclusions are given in Section 4.
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2 Proposed Approach

This section presents the image fusion algorithms evaluated in the monocular visual
odometry context. Let Iv be a visible spectrum (VS) image and Iir the corresponding
one from the Long Wavelength Infrared (LWIR) spectrum. In the current work we
assume the given pair of images are already registered. The image resulting from the
fusion will be referred to as F .

2.1 Discrete Wavelet Transform based Image Fusion

The image fusion based on discrete wavelet transform (DWT) consists on merging the
wavelet decompositions of the given images (Iv, Iir ) using fusion methods applied
to approximations coefficients and details coefficients. A scheme of the DWT fusion
process is presented in Fig. 1. Initially, the process starts by decomposing the given
images into frequency bands. They are analyzed by a fusion rule to determine which
component (Di = {d1, ..., dn}) is removed and which one is preserved. Finally, the
inverse transform is applied to get the fused image into the spacial domain. There are
different fusion rules (e.g., [16], [17]) to decide which coefficient should be fused
into the final result. In the current work high order bands are preserved, while low
frequency regions (i.e., smooth regions) are neglected. Figure 2 presents a couple
of fused images obtained with the DWT process. Figure 2(le f t) depicts the visible
spectum images (Iv) and the corresponding LWIR images (Iir ) are presented in
Fig. 2(middle). The resulting fused images (F) are shown in Fig. 2(right).
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Decomposition 2 
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Fig. 1 Scheme of the Discrete Wavelet Transform fusion process.

2.2 Monochrome Threshold based Image Fusion

The monochrome threshold image fusion technique [18] just highlights in the visible
image hot objects found in the infrared image. It works as follows. Firstly, an overlay
image O(x, y) is created using the thermal image Iir (x, y) and an user defined
temperature threshold value τ (see Eq. 1). For each pixel value greater than the
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Fig. 2 Illustrations of DWT based image fusion. (le f t) VS image. (middle) LWIR image. (right)
Fused image.

threshold value τ a new customized H SV value is obtained, using a predefined H
value and the raw thermal intensity for the S and V channels. In the current work
the H value is set to 300—this value should be tuned according with the scenario in
order to easily identify the objects associated with the target temperature:

O(x, y) =
{

H SV (H, Iir (x, y), Iir (x, y)) if Iir (x, y) > τ

H SV (0, 0, 0) otherwise
(1)

Secondly, after the overlay has been computed, the fused image F(x, y) is com-
puted using the visible image Iv(x, y) and the overlay image O(x, y) (see Eq. 2).
The α value is an user defined opacity value that determines how much we want to
preserve of the visible image in the fused image:

F(x, y) =
{

Iv(x, y)(1 − α) + O(x, y)α if Iir (x, y) > τ

Iv(x, y) otherwise
(2)

As a result we obtain an image that is similar to the visible image but with thermal
clues. Figure 3 presents a couple of illustrations of the monochrome threshold image
fusion process. Figure 3(le f t) depicts the visible spectrum images (Iv); the infrared
images (Iir ) of the same scenarios are shown in Fig. 3(middle) and the resulting
fused images (F) are presented in Fig. 3(right).To obtain these results the alpha was
tuned to 0.3. That leads, if IR pixel intensity is higher than the temperature threshold,
to a resulting pixel intensity blend by 30 percent from infrared and 70 percent from
visible image.
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2.3 Monocular Visual Odometry

The fused images computed above are evaluated using the monocular version of
the well-known algorithm proposed by Geiger et al. in [19], which is referred to as
LibVISO2.

Generally, results from monocular systems are up to a scale factor; in other words
they lack of a real 3D measure. This problem affects most of monocular odometry
approaches. In order to overcome this limitation, LibVISO2 assumes a fixed transfor-
mation from the ground plane to the camera (parameters given by the camera height
and the camera pitch). These values are updated at each iteration by estimating the
ground plane. Hence, features on the ground as well as features above the ground
plane are needed for a good odometry estimation. Roughly speaking, the algorithm
consists of the following steps:

Fig. 3 Illustration of monochrome threshold based image fusion. (le f t) VS image. (middle) LWIR
image. (right) Fused image.

– Compute the fundamental matrix (F) from point correspondences using the 8-point
algorithm.

– Compute the essential matrix (E) using the camera calibration parameters.
– Estimate the 3D coordinates and [R|t]
– Estimate the ground plane from the 3D points.
– Scale the [R|t] using the values of camera height and pitch obtained in previous

step.

3 Experimental Results

This section presents experimental results and comparisons obtained with different
cross-spectral video sequences. In all the cases GPS information is used as ground
truth data to evaluate the performance of evaluated approaches. The GPS ground
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truth must be considered as a weak ground truth, since it was acquired using a low-
cost GPS receiver. Initially, the system setup is introduced and then the experimental
result are detailed.

3.1 System Setup

This section details the cross-spectral stereo head used in the experiments together
with the calibration and rectification steps. Figure 4 shows an illustration of the whole
platform (from the stereo head to the electric car used for obtaining the images).

The stereo head used in the current work consists of a pair of cameras set up in a non
verged geometry. One of the camera works in the infrared spectrum, more precisely
Long Wavelength Infrared (LWIR), detecting radiations in the range of 8 − 14 μm.
The other camera, which is referred to as (VS) responds to wavelengths from about
390 to 750 nm (visible spectrum). The images provided by the cross-spectral stereo
head are calibrated and rectified using [20]; a process similar to the one presented
in [3] is followed. It consists of a reflective metal plate with an overlain chessboard
pattern. This chessboard can be visualized in both spectrums making possible the
cameras’ calibration and image rectification.

The LWIR camera (Gobi-640-GigE from Xenics) provides images up to 50 fps
with a resolution of 640×480 pixels. The visible spectrum camera is an ACE from
Basler with a resolution of 658×492 pixels. Both cameras are synchronized using an
external trigger. Camera focal lengths were set so that pixels in both images contain
similar amount of information from the given scene. The whole platform is placed
on the roof of a vehicle for driving assistance applications.

Once the LWIR and VS cameras have been calibrated, their intrinsic and extrin-
sic parameters are known, being possible the image rectification. With the above
system setup different video sequences have been obtained in urban and semi-urban
scenarios. Figure 5 shows the map trajectories of three video sequences. Additional
information is provided in Table 1.

Fig. 4 Acquisition system (cross-spectral stereo rig on the top left) and electric vehicle used as
mobile platform.
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Fig. 5 Trajectories used during the evaluations: (left) Vid00 path; (middle) Vid01 path; (right)
Vid02 path.

Table 1 Detailed characteristics of the three datasets used for the evaluation.

Name Type Duration (sec) Road length (m) Average speed (km/h)
Vid00 Urban 49.9 235 17.03
Vid01 Urban 53.6 365 24.51
Vid02 Semi-urban 44.3 370 30.06

3.2 Visual Odometry Results

In this section experimental results and comparisons, with the three video sequences
introduced above (see Fig. 5 and Table 1), are presented. In order to have a fair
comparison the user defined parameters for the VO algorithm (LibVISO2) have been
tuned accordingly to the image nature (visible, infrared, fused) and characteristics of
the video sequence. These parameters were empirically obtained looking for the best
performance in every image domain. In all the cases ground truth data from GPS are
used for comparisons.

Vid00 Video Sequence: it consists of a large curve in a urban scenario. The car
travels more than 200 meters at an average speed of about 17 Km/h. The VO algorithm
(LibVISO2) has been tuned as follow for the different video sequences (see [19] for
details on the parameters meaning). In the visible spectrum case the bucket size has
been set to 16×16 and the maximum number of features per bucket has been set to
4. The τ and match radius parameters were tuned to 50 and 200 respectively. In the
infrared video sequence the bucket size has been also set to 16×16 but the maximum
number of features per bucket has been increased to 6. Regarding τ and match radius
parameters, they were set to 25 and 200 respectively. Regarding the VO with fused
images the parameters were set as follow. In the video sequences obtained by the
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(a) (b)

(c) (d)

Fig. 6 Estimated trajectories for the Vid00 sequence: (a) Visible spectrum; (b) Infrared spectrum;
(c) DWT fused images; and (d) Monochrome threshold fused images.

DWT fusion based approach the bucket size was set to 16×16 and the maximum
number of features per bucket to 6; τ and the match radius parameters were set
to 25 and 200 respectively. Finally, in the Monochrome Threshold fusion based
approach the bucket size has been also set to 16×16 but the maximum number of
features has been increased to 6. The τ and match radius parameters were tuned to
50 and 100 respectively. The refining at half resolution is disabled, since the image
resolution of the cameras is small. Figure 6 depicts the plots corresponding to the
different cases (visible, infrared and fused images) when they are compared with
ground truth data (GPS information). Quantitative results corresponding to these
trajectories are presented in Table 2. In this particular sequence, the VO computed
with the visible spectrum video sequence get the best result just followed by the
one obtained with the DWT video sequence. Quantitatively, both have a similar final
error, on average the DWT relay on more matched points, which somehow would
result in a more robust solution. The visual odometry computed with the infrared
spectrum video sequence get the worst results; this is mainly due to the lack of texture
in the images.

Vid01 Video Sequence: it is a simple straight line trajectory on a urban scenario
consisting of about 350 meters; the car travels at an average speed of about 25 Km/h.
The (LibVISO2) algorithm has been tuned as follow. In the visible spectrum case the
bucket size was set to 16×16 and the maximum number of features per bucket has
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Table 2 VO results in the Vid00 video sequence using images from: visible spectrum (VS);
Long Wavelength Infrared spectrum (LWIR); fusion using Discrete Wavelet Transform (DWT);
and fusion using Monochrome Threshold (MT).

Results VS LWIR DWT MT
Total traveled distance (m) 234.88 241.27 245 240.3

Final position error (m) 2.9 18 5.4 14.4
Average number of matches 2053 3588 4513 4210

Percentage of inliers 71.5 61.94 60 67.9

been set to 4. The variables τ and match radius parameters are respectively tuned to 25
and 200. The user defined parameters in the Infrared case have been set as follow. The
bucket size was defined as 16×16 and the maximum number of features per bucket has
been set to 50 and 200 respectively. The half resolution was set to zero. The LibVIS02
algorithm has been tuned as follow when the fused images were considered. In the
DWT fusion based approach the bucket size was set to 16×16 and the maximum
number of features per bucket set to 4. The τ and match radius parameters are
respectively tuned to 25 and 200. Finally, in the Monochrome Threshold fusion
based approach the bucket size was set to 16×16 and the maximum number of
features per bucket was set to 4. The τ and match radius parameters are respectively
tuned to 25 and 200. Figure 7 depicts the plots of the visual odometry computed over
each of the four representations (VS, LWIR, DWT fused and Monochrome threshold
fused) together with the corresponding GPS data. The visual odometry computed
with the infrared video sequence gets the worst result, as can be easily appreciated in
Fig. 7 and confirmed by the final position error value presented in Table 3. The results
obtained with the other three representations (visible spectrum, DWT based image
fusion and Monochrome Threshold based image fusion) are similar both qualitatively
and quantitatively.

Vid02 Video Sequence: it is a “L” shape trajectory on a sub-urban scenario. It is the
longest trajectory (370 meters) and the car has traveled faster than in the previous
cases (about 30 Km/h). The (LibVISO2) algorithm has been tuned as follow. In the
visible spectrum case the bucket size was set to 16×16 and the maximum number
of features per bucket set to 4. Regarding τ and match radius parameters, they were
tuned as 25 and 200 respectively. In the infrared case the bucket size has been set
to 16×16 and the maximum number of features per bucket set to 4. τ and match
radius parameters were respectively tuned to 50 and 100. In the fused image scenario
the LibVIS02 algorithm has been tuned as follows. First, in the DWT fusion based
approach the bucket size has been set to 16×16 and the maximum number of features
per bucket set to 4. Like in the visible case, the τ and match radius parameters were
tuned to 25 and 200 respectively. Finally, in the Monochrome Threshold fusion
based approach the bucket size has been defined as 16×16 and the maximum
number of features per bucket set to 4. The τ and match radius parameters were
respectively tuned to 50 and 200. In this challenging video sequence the fused based
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(a) (b)

(c) (d)

Fig. 7 Estimated trajectories for Vid01 sequence: (a) Visible spectrum; (b) Infrared spectrum; (c)
DWT based fused image; and (d) Monochrome threshold based fused image.

Table 3 VO results in the Vid01 video sequence using images from: visible spectrum (VS);
Long Wavelength Infrared spectrum (LWIR); fusion using Discrete Wavelet Transform (DWT);
and fusion using Monochrome Threshold (MT).

Results VS LWIR DWT MT
Total traveled distance (m) 371.8 424 386 384

Final position error (m) 32.6 84.7 44 42.7
Average number of matches 1965 1974 2137 2060

Percentage of inliers 72.6 67.8 61.5 65.4

Table 4 VO results in the Vid02 video sequence using images from different spectrum and fusion
approaches (VS: visible spectrum; LWIR: Long Wavelength Infrared spectrum, DWT: fusion using
Discrete Wavelet Transform, MT: fusion using Monochrome Threshold).

Results VS LWIR DWT MT
Total traveled distance (m) 325.6 336.9 354.4 371.5

Final position error (m) 37.7 48.7 37.2 14.3
Average number of matches 1890 1028 1952 1374

Percentage of inliers 70 65.8 61 66

approaches get the best results (see Fig. 8). It should be highlighted that in the
Monochrome Threshold fusion the error is less than half the one obtained in the
visible spectrum (see values in Table 4).



A Visible-Thermal Fusion Based Monocular Visual Odometry 527

(a) (b)

(c) (d)

Fig. 8 Estimated trajectories for Vid02 sequence: (a) Visible spectrum; (b) Infrared spectrum; (c)
DWT fused image; and (d) Monochrome threshold based fused image.

In the general, the usage of fused images results in quite stable solutions; sup-
porting somehow the initial idea that classical approaches can be improved when the
given cross-spectral images are fused and represented in new domains.

4 Conclusion

The manuscript evaluates the performance of a classical monocular visual odometry
by using images from different spectra represented in different domains. The obtained
results show that the usage of fused images could help to obtain more robust solutions.
This evaluation study is just a first step to validate the pipeline in the emerging field
of image fusion. As future work other fusion strategies will be evaluated and a more
rigorous framework set up.
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