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Abstract. Pedestrian detection from images of the visible spectrum is
a high relevant area of research given its potential impact in the design
of pedestrian protection systems. There are many proposals in the liter-
ature but they lack a comparative viewpoint. According to this, in this
paper we first propose a common framework where we fit the different
approaches, and second we use this framework to provide a comparative
point of view of the details of such different approaches, pointing out also
the main challenges to be solved in the future. In summary, we expect
this survey to be useful for both novel and experienced researchers in the
field. In the first case, as a clarifying snapshot of the state of the art; in
the second, as a way to unveil trends and to take conclusions from the
comparative study.

1 Introduction

Pedestrian accidents are the second source of traffic injuries and fatalities in
the European Union. In this sense, advanced driver assistance systems (ADAS),
and specifically pedestrian protection systems (PPS), have become an important
field of research to improve traffic safety. Of course, in order to avoid collisions
with pedestrians they must be detected, being camera sensors key due to the
rich amount of cues and high resolution they provide.

Currently there are two main lines of work, one based on images of the visi-
ble spectrum, and the other, mainly motivated by nighttime, based on thermal
infrared. The former has accumulated more literature because the easier avail-
ability of either CCD or CMOS sensors working in the visible spectrum, their
cheaper price, better signal–to–noise ratio and resolution, and because most of
the accidents happen at daytime. Therefore, we restrict the discussion presented
in this paper to works based on images of the visible spectrum.

In this context, difficulties of the pedestrian detection task for PPS arise both
from working with a mobile platform in an outdoor scenario, recurrent challenge
in all ADAS applications, and from dealing with a so aspect–changing class
like pedestrians. Difficulties can be summarized in the followings: (a) targets
have a very high intra–class variability; (b) background can be cluttered and
changes in milliseconds; (c) targets and camera usually follow different unknown
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movements; and (d) fast system reaction together with a very robust response
is required.

The high social relevance of PPS and the above mentioned difficulties have
given rise to a number of works. However, due to the lack of common datasets
for validation and the complexity of the different proposals, most of the papers
present their own approach without comparison with others. Thus, a comparative
review is of high relevance both for novel and experienced researchers in the field.
In this paper, a survey of works with images of the visible spectrum is presented.

Addressing such a review just by summarizing the most relevant papers one
by one in isolation would make difficult the comparative viewpoint. Thus, we
propose first (Sect. 2) a common framework (i.e., a system architecture) in which
the main works of the literature are fitted. This framework is based on the main
subtasks of the pedestrian detection for PPS, then we will use it also for providing
a critical overview of the described techniques together with the main challenges
for the future (Sect. 3). Finally, conclusions are presented in Sect. 4.

2 Proposed Architecture and Literature Review

Figure 1 presents an architecture of modules used in the sequel as common frame-
work to review the literature. This architecture–based review is summarized in
Table 1 from the viewpoint of each individual work, while Table 2 provides
some relevant details of the previous systems. Although the PPS architecture
has six modules here we focus only on the most active ones due to the lack of
space: Foreground Segmentation, Object Classification, Verification/Refinement
and Tracking. Refer to Fig. 1 to see each module’s responsibility.

2.1 Foreground Segmentation

Binocular Stereo. The use of stereo in this module aims to provide 2D ROIs
corresponding to 3D vertical objects fitting some pedestrian size constraints
(PSC). Gavrila et al. [1] scan the depth map with PSC–sized ROIs laying in the
assumed ground plane. A ROI is accepted if its depth distribution agrees with
the expected. Zhao et al. [2] apply thresholding, morphological operations and
blob analysis to the depth map, selecting remaining PSC–sized blob bounding
boxes. Broggi et al. [3] use the v–disparity [4] to distinguish between ground,
background and vertical objects in the scene.

Rough Appearance. These are 2D approaches. In several works [5,3] by Broggi
et al. vertical symmetry, derived from grey level and vertical gradient magnitude,
is used to select PSC–sized ROIs around each relevant symmetry axis. Shashua
et al. [6] select PSC–sized ROIs with an expected texture.

2.2 Object Classification

All found approaches fitting object classification are purely 2D, thus they only
use the 2D information of the ROIs provided by the foreground segmentation.
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Fig. 1. Proposed module–based architecture and responsibility of each module

Silhouette Matching. In [5] a ROI is considered as containing a pedestrian
if there is a good matching with a head–shoulders like binary pattern. A more
sophisticated technique is the Chamfer system [1,7] by Gavrila et al., where
a distance transform of the ROI is calculated and used for a coarse–to–fine
template matching in a space of pedestrian shapes hierarchically organized.

Appearance. The methods included here start by defining a space of image
features, and then learning a classifier by using ROIs containing examples (pedes-
trians) and counter–examples (non–pedestrians). A common detail is to normal-
ize the size and aspect ratio of the incoming ROIs, as well as discarding color
information (because the variability of clothes).

Two approaches can be found: holistic or parts–based. In the holistic approach
a classifier uses different image features to determine if a ROI contains a full
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Table 1. Most relevant systems. Each row shows the proposal of the corresponding
authors for each module of the architecture of Fig. 1, following our interpretation (note:
Q.SVM/L.SVM states for Quadratic/Linear Support Vector Machine).

Foreground Object Verification/
Segmentat. Classification Refinement Tracking

[1] Stereo Silhouette + Chamfer System Stereo, gait pattern Kalman; particle
[7] +PSC Texture + NN-LRF also tested filters; α-β tracker.
[8] Silhouette, texture,
[9] stereo, CAN data
[10] Symmetry (here another possibility Stereo + PSC + adhoc Kalman.

+PSC was to think about PSC image filters, 3D curves Grey-level, Stereo.
as segmentation and matching as well as

symmetry as classification) autonomous agents were
also tested

[5] Stereo (v-d) Silhouette of head and Stereo+PSC+entropy
[3] Symmetry shoulders

+PSC
[6] Texture Components: Gradient Or.*Mag Multi frame after (used but not

+PSC + RR-AdaBoost tracking: gait, classi- detailed)
Different training per pose fication goodness over
and illumination conditions time, etc., multi-class

help suggested
[11] Stereo (v-d) Gradient magnitude + Q.SVM Classification goodness Kalman. Stereo

Different training per pose over time with the help
(Front/Rear or Side viewed) of tracking

[2] Stereo+PSC Gradient magnitude + NN
[12] Horizon Line Haar + EOH + Real AdaBoost

estimation
+PSC

[13] Holistic: Basic Haar + Q.SVM Heuristic
[14] Parts–based: Basic Haar + integration

Q.SVM-L.SVM through time
[15] HOG/Fixed Blocks + L.SVM

pedestrian. In the parts–based, there is a first stage that searches for predefined
different parts (e.g., head, legs and arms) inside of a ROI using different classifiers
based on image features. Next, a second stage uses the output of such classifiers
as input of a final full pedestrian classifier.

Following the holistic approach, in [1] Gavrila et al. propose a classifier that,
for the ROIs preclassified as pedestrian for the Chamfer System, uses texture as
feature and learning with a Neural Network of Local Receptive Fields (NNLRF,
further study in [8]). In [2], the feature used by Zhao et al. is gradient magni-
tude, and a three–layer Feed Forward Neural Network (FFNN) is the learning
machine. In [13] a preestablished set of Haar wavelets is used by Papageorgiou
et al. as features to learn a classifier for front/rear viewed pedestrians with a
quadratic Support Vector Machine (SVM). Dalal and Triggs [15] present a hu-
man classification algorithm that uses Histograms of Oriented Gradients (HOG)
as features and a linear SVM as learning method. In order to obtain a classifier
for front, rear and side viewed pedestrians Gerónimo et al. [12] use a Real Ad-
aBoost learning method to select the best features among a set of Haar wavelets
and Edge Orientation Histograms (EOH) that cover all possible scales of a ROI.

Haar wavelets are also used by Mohan et al. in a parts–based classification [14].
In this case, each ROI is divided in four parts (head, legs, right and left arms),
and for each part a classifier is learned using a quadratic SVM. Then, the final
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Table 2. Details of the most relevant classifier based approaches. (DR: Detection Rate,
FPR: False Positive Rate, FPPW: False Positives Per Window, n/a: information not
available/applicable). Note that training and testing sets are different in each system.

Learning Classifier Classifier Classifier System System Detection
ROI size Train Set Test Set Performance Test Set Performance Range

[1] (Chamfer) (Chamfer) (Chamfer) (Chamfer) 24 min (all) 5–25m
[7] 70–102 pix 1,250pos 900 images 60–90% DR driving 52–76% DR
[8] wide n/a FPR 30% precision
[9] (NN-LRF) (NN-LRF) (NN-LRF) (NN-LRF) (risky)

18 × 36 14,400 pos 9,600 pos 90% DR 80–90% DR
15,000 neg 10,000 neg 10% FPR 75% precision

[6] 12 × 36 25,000 pos 15,244 93.5% DR 5hr (inward moving) 3–25m
25,000 neg in total 8% FPR driving 96%DR, 1FPPW

(statio. inpath)
93%DR, 3FPPW
(statio. outpath)

85%DR,102FPPW
[11] – 1,500 pos 150 pos 75% DR 2,500frame 83.5% DR up to

20,000 neg 2,000 neg 2% FPR (14 pedest.) 0.4% FPR 30m
[2] 30 × 65 1,012 pos 254 pos 85.4% DR FGS ROIs 85.2% DR n/a

4,306 neg 363 neg 0.05 % FPR 3.1% FPPW
[12] no 700 pos 300 pos 90% DR n/a n/a 5–50m

downscale 4,000 neg 1,000 neg 1% FPR
[13] 64 × 128 1,848 pos 123 images (color) n/a n/a n/a

11,361 neg scan 93% DR
0.1% FPPW
(grayscale)
83% DR

0.1% FPPW
[14] 64 × 128 889 pos 12 images 96% DR n/a n/a n/a

3,106 neg scan 10−4% FPPW
[15] 64 × 128 2,478 pos images 85% DR n/a n/a n/a

12,180 neg scan 10−4% FPPW

ROI classification combines the parts–classifiers responses by using a linear SVM.
In [6] Shashua et al. use thirteen overlapping parts described by SIFT inspired
features and ridge regression (RR) to learn the classifier of each part. Moreover,
to deal with the high intra–class variability, the training set is divided in nine
clusters according to pose and illumination conditions, thus getting 9×13 = 117
classifiers. The outputs of the 117 classifiers are fed as weak rules to an AdaBoost
machine that sets the final classification rule.

2.3 Verification/Refinement

In many systems, the methods used in this module take advantage of previously
exploited techniques. For instance, in [1], a cross–correlation using the left image
and the isolated silhouette computed by the Chamfer System in the right image
is used to refine the location of the pedestrian. In [9], the authors suggest to
analyse the gait pattern for pedestrians crossing perpendicular to the camera.
In this case, the target must be tracked before applying this method, thus ver-
ification/refinement and tracking modules are interchanged (Fig. 1). In [5], the
head and shoulders silhouette matched during classification is taken as reference
to refine the detection until the feet by making use of the vertical edges computed
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for the symmetry detection. Additionally, since no stereo reasoning is done in
the segmentation module, refinement can be improved by this cue.

In [6], Shashua et al. propose a multi–frame approval process, which consists in
validating the pedestrian–classified ROIs by collecting information from several
frames: gait pattern, inward motion, confidence of the single–frame classification,
etc. In this case, verification comes after tracking too.

2.4 Tracking

Kalman filter is the most used technique for tracking. Two examples are [10],
where a Kalman–filter tracker is used to reject spurious detections as well as
computing the trajectory of the pedestrian. In [11], Kalman filters are used to
maintain pedestrian estimates and Bayesian probability to provide an estimate of
pedestrian classification certainty over time and a targets’ trajectory and speed.

3 Discussion

In spite of the high number of works in the field and the clear progress achieved,
pedestrian detection is still an open area of research. The difficulties this prob-
lem carries are so wide that the methods exploited in each module must still
improve their robustness before expecting convincing results for the complete
system. Next, some discussion is made at each stage of the proposed archi-
tecture in order to emphasize the strengths and weaknesses of the described
techniques.

Foreground segmentation based on stereo has several advantages: 1) robust-
ness to illumination changes; 2) the provided distances are useful to determine
ROIs at the foreground segmentation itself, for tracking and as associated in-
formation of the detected pedestrians; 3) stereo information can be shared by
different ADAS applications. The main drawbacks come from the high com-
putation time needed to extract depth (considerable improvements are being
achieved in this matter [16]) and the problems of the technique when uniform
areas appear. Despite these problems, stereo is a very reliable technique. Rough–
appearance is not so promising. [6] claims to select just 75 ROIs per frame, but
details about the technique are not provided. Moreover, works exploiting verti-
cal symmetry [5,3] tend to be supported by stereo information, so we guess that
symmetry alone is not sufficient.

Referring to object classification, it seems clear that silhouette matching meth-
ods are not applicable in a stand–alone fashion. Even the very elaborated Cham-
fer System needs an extra step that follows the appearance–based classification
idea. On the other hand, appearance–based seem to be a promising line of re-
search, nowadays still being explored in computer vision. However, despite the
improvements in generalization achieved with SVM or AdaBoost, and the more
and more faster–to–extract and meaningful features presented in recent years
(e.g., Haar, HOG, EOH, etc.), there is still much work to do.

Next we illustrate this with a simple example inspired by [17]. Let us assume
10,000 ROIs per image by using PSC to be classified by the best classifier in the
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PPS literature, i.e., a 95% Detection Rate at 0.1% FPR [6] (a full scan would
imply at least one million of ROIs for a 640 × 480 image). This means that if
95% of pedestrians have to be detected, then in the worse scenario we could
have about 1,000 FP per image, i.e., 25,000 FP per second at 25 fps. Thanks to
additional procedures like foreground segmentation or detection clustering, we
can assume that this number can be reduced to only 75 ROIs to check per frame
as suggested in [6], but still this would represent 187.5 FP/s. A tracking module
could filter out spurious and not coherent detections to reduce the final number
to, say, 1 FP/s. Anyway, even 1 FP/s (i.e., 60 FP/minute) is still useless for
a PPS. From this example we see the importance of improving all the system
modules, specially the classification rate.

As can be noticed, state–of–the–art classifiers like the HOG–based [15] still
need a verification and refinement step. Two points can be highlighted from the
this module. First, stereo information tends to be used as long as the classifica-
tion has been based on the 2D image. However, it is unclear for us why some
works do not exploit this 3D information during the foreground segmentation.
Second, using verification after tracking seems to be an interesting approach
since common movement–based techniques (e.g., gait pattern analysis) used in
surveillance could be applied. This

Up to now, the tracking module in PPS has not received as much attention
as other modules like segmentation or classification. Each paper has its own
proposal and no comparisons have been made. It is clear that tracking could
provide useful information for other modules (e.g., trajectory information for
applications, potential ROIs for segmentation, etc.).

4 Conclusions

We have presented a review of on–board pedestrian detection works based on
images of the visible spectrum. A general module–based architecture is pro-
posed so the reviewed techniques can be fitted and compared according to
their objectives and responsibilities in the system, thus providing an compar-
ative snapshot the state of the art. Regarding the future trends, it can be
said that object classification is subject to the most active and fruitful
research. However, as can be appreciated, the absence of comparisons with com-
mon benchmarks and the constant improvement of learning algorithms and fea-
tures make it hard to state which is the best approach. Finally, it is worth
to say in order to achieve commercial performance (e.g., detection rates and
timings), the other modules must also be further developed. In this sense, sen-
sors fusion (e.g., visible spectrum cameras with radar) seem to be a promising
approach.

Acknowledgments. This work was supported by the Spanish Ministry of Ed-
ucation and Science under project TRA2004-06702/AUT, BES-2005-8864 grant
(first author) and Ramón y Cajal Program (third author).



554 D. Gerónimo, A. López, and A.D. Sappa
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