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Abstract— This paper presents a robust approach for detect-
ing moving objects from on-board stereo vision systems. It relies
on a feature point quaternion-based registration, which avoids
common problems that appear when computationally expensive
iterative-based algorithms are used on dynamic environments.
The proposed approach consists of three stages. Initially, feature
points are extracted and tracked through consecutive frames.
Then, a RANSAC based approach is used for registering
two 3D point sets with known correspondences by means
of the quaternion method. Finally, the computed 3D rigid
displacement is used to map two consecutive frames into the
same coordinate system. Moving objects correspond to those
areas with large registration errors. Experimental results, in
different scenarios, show the viability of the proposed approach.

I. INTRODUCTION

In general, moving object detection algorithms assume
stationary cameras, which means all frames are registered
in the same coordinate system. Therefore typical approaches
reduce to background modelling and subtraction (see [1]
and [2] for an extensive survey). However, when the camera
moves, the problem becomes intricate since it is unfeasible
to have a background model. In such a case, moving object
detection is generally tackled by using prior-knowledge of
the scene together with visual cues. In the current paper
the use of 3D image registration will be explored in order
to align consecutive stereo frames into the same coordinate
system; then, a 3D frame subtraction is performed to find
regions with large misregistration, which theoretically would
correspond to moving objects.

A large number of approaches have been proposed in the
literature for 3D point registration. Most of these approaches
are based on the well-known ICP (Iterative Closest Point) al-
gorithm [3], or adaptations of it such as LM-ICP (Levenberg-
Marquardt ICP) [4], TrICP (Trimmed ICP) [5]. All these
algorithms have been originally proposed for registering
overlapped sets of points corresponding to the 3D surface
of a rigid object. Extensions to a more general framework,
where the 3D surfaces to be registered correspond to different
views of a given scene, have been presented in the robotic
field (e.g., [6], [7], [8], [9]). Actually, in all these extensions,
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the registration is used for the simultaneous localization and
mapping (SLAM) of the mobile platform (i.e., the robot).

Although some approaches differentiate static and dy-
namic parts of the environment before registration ([7], [10]),
most of them assume that the environment is static, con-
taining only rigid, non-moving objects. Therefore, if moving
objects are present in the scene, the least squares formulation
of the problem will provide a rigid transformation biased by
the motions in the scene.

On the contrary to the robotic field, where the objective is
simultaneous localization and mapping, the proposed robust
registration aims at detecting moving objects in the scene. It
is intended to be used in ADAS (Advanced Driver Assistance
Systems) applications, where an on-board camera explores
the current scene in real time. Usually, an exhaustive window
scanning approach is adopted to extract regions of interests
(ROIs), needed in many object (e.g. pedestrian or vehicle)
detection systems. More evolved approaches, focussing on
ROIs extracted from vertical surfaces (e.g., v-disparity based
[11]) have also been proposed in the literature. Unfortunately,
both of the previous approaches could become computa-
tionally expensive when thousands of ROIs are extracted.
The concept of consecutive frame registration for moving
object detection has been recently explored in [12], where an
active frame subtraction for pedestrian detection from images
of moving cameras is proposed. In that work, consecutive
frames were not registered by a vision based approach but
by estimating the relative camera motion using vehicle speed
and a gyrosensor.

The current paper presents a robust quaternion-based so-
lution for registering dense clouds of 3D points with known
sparse correspondences [13], [14], obtained from sequential
stereo images. Images are taken from a moving vehicle on
an urban scenario containing static and moving objects. The
use of additional information, such as inertial sensors [15],
[16] or vehicle speed [12] is not required in the proposed
approach.

The remainder of this paper is organized as follows.
Section II briefly describes the feature point detection and
tracking algorithms. Section III presents the proposed robust
registration approach. Finally, the frame subtraction tech-
nique used to detect moving objects is described. Experimen-
tal results in real environments are presented in Section V.
Finally, conclusions and future works are given in Section VI.

II. EXTRACTION OF 3D POINT SETS

The first stage of the proposed approach consists in ex-
tracting a set of 2D feature points at a given frame and track
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Fig. 1. (top) Feature points detected and tracked through consecutive
frames. (bottom) Illustration of feature points represented in the 3D space,
together with three couples of points used for computing the 3D rigid
displacement: [R|t]—RANSAC-like technique.

it through the next frame; the 3D coordinates corresponding
to each of these 2D feature points are later on used during
the registration process, where the rigid displacement (six
degrees of freedom) that maps the 3D scene associated with
frame (n) into the 3D scene associated with frame (n + 1)
is computed (see Figure 1). We can note that this rigid
transform is simply the 3D motion of the camera between
frame (n) and frame (n + 1). Before going into details in
the feature point detection and tracking algorithms a brief
description of the used stereo vision system is given.

A. System Setup

In order to acquire the 3D information of the scene in
front of the host vehicle, a commercial stereo vision system
(Bumblebee from Point Grey1) has been used. It consists
of two Sony ICX084 Bayer pattern CCDs with 6 mm focal
length lenses. Bumblebee is a pre-calibrated system that does
not require in-field calibration. The baseline of the stereo
head is 12 cm and it is connected to the computer by
an IEEE-1394 interface. Right and left color images were
captured at a resolution of 640×480 pixels. After capturing
each right-left pair of images, a dense cloud of 3D data
points is computed by using the provided 3D reconstruction
software. Right images are used during the feature point
detection and tracking stage. Every stereo vision frame (n)
is associated with an intensity image In (right image) and
the corresponding 3D cloud of points Pn.

B. Feature Detection and Tracking

The proposed algorithm starts by selecting a set of feature
points, using Harris corner detector [17], in a given image
In. Feature points, fn

i(u,v) ⊂ In, further away from the
camera position (Pn

i(x,y,z) > δ) are discarded in order to

1[www.ptgrey.com]

increase registration accuracy2 (δ = 15 m in the current
implementation). More elaborated descriptors, such as SIFT-
based feature extraction [19], could be used without affecting
the rest of the proposed algorithm.

After selecting a set of feature points and setting a tracking
window WT (9×9 pixels in the current implementation)
an iterative feature tracking algorithm is used [20]. Feature
points are tracked by minimizing the sum of squared differ-
ences between two consecutive frames.

III. ROBUST REGISTRATION

The set of 2D-to-2D point correspondences obtained by
tracking, is easily converted to a set of 3D-to-3D points since
for every frame we have a quasi dense 3D reconstruction.
In the current approach, contrary to ICP based algorithms,
the correspondences between the two point sets are known;
hence, the main challenge that should be faced during this
stage is the fact that feature points could belong to static
or moving objects in the scene. Since the camera is moving
there are no additional clues to differentiate them easily. In
the current work the use of a robust RANSAC-like technique
is proposed to find the best rigid transform that maps the 3D
points of frame (n) into their corresponding in frame (n +
1). The closed-form solution provided by unit quaternions is
chosen to compute this 3D rigid displacement, with rotation
matrix R and translation vector t between the two sets of
vertices. The proposed approach works as follows:

Random sampling. Repeat the following three steps K
times (in our experiments K was set to 100):

1) Draw a random subsample of 3 different pairs of
feature points (Pn

i(x,y,z), P
n+1
i(x,y,z))k, where Pn

i(x,y,z) ∈
Pn, Pn+1

i(x,y,z) ∈ Pn+1 and i = {1, 2, 3}.
2) For this subsample, indexed by k (k = 1, ...., K),

compute the 3D rigid displacement Dk = [Rk|tk]
that minimizes the residual error

∑3
i=1 |Pn+1

i(x,y,z) −
RkPn

i(x,y,z) − tk|2. This minimization is carried out
by using the closed-form solution provided by the unit
quaternion method [13].

3) For this solution Dk, compute the number of inliers
among the entire set of pairs of feature points accord-
ing to a user defined threshold value.

Solution.
1) Choose the best solution, i.e., the solution that has the

highest number of inliers. Let Dq be this solution.
2) Refine the 3D rigid displacement [Rq|tq] by using the

whole set of couples considered as inliers, instead of
the corresponding 3 pairs of feature points. A similar
unit quaternion representation [14] is used to minimize:∑#inliers

i=1 |Pn+1
i(x,y,z) − RqPn

i(x,y,z) − tq|2.

IV. FRAME SUBTRACTION

The best 3D rigid displacement [Rq|tq] computed above
with inliers 3D feature points is representing the camera
motion. Thus, it will be used for detecting moving regions

2Stereo head data uncertainty grows quadratically with depth [18].
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Fig. 2. Synthesized view representing frame (840) in the coordinate system
of frame (841), by using the computed 3D rigid displacement: [Rq|tq].

after motion compensation. First, the whole set of 3D data
points at frame (n) is mapped by:

P̂n+1
i(x,y,z) = RqP

n
i(x,y,z) + tq , (1)

where P̂n+1
i(x,y,z) denotes the mapping of a given point from

frame n into the next frame. Note that for static 3D points
ideally we have P̂n+1

i(x,y,z) = Pn+1
i(x,y,z).

Once the whole set of points Pn has been mapped, we
can also synthesize the corresponding 2D view as follows:

ûn+1
i = (round)

(
u0 + f

x̂n+1
i

ẑn+1
i

)
, (2)

v̂n+1
i = (round)

(
v0 + f

ŷn+1
i

ẑn+1
i

)
where f denotes the focal length in pixels, (u0, v0) rep-
resents the coordinates of the camera principal point, and
(x̂n+1

i , ŷn+1
i , ẑn+1

i ) correspond to the 3D coordinates of
the mapped point (1). Fig. 2 shows an illustration of the
synthesized view obtained after mapping frame (840) (Fig.
1(left)) with its corresponding [Rq|tq].

A moving region map, D(u,v), is then computed using
the difference between the synthesized scene and the actual
scene as follows:

D(u,v) =

{
0, if |P̂n+1

i(x,y,z) − Pn+1
i(x,y,z)| < τ

|În+1
(u,v) − In+1

(u,v)|, otherwise
,

(3)
where, τ is a user defined threshold directly related to the
camera frame rate (in the current implementation it has been
empirically set to 0.1 meters, assuming a 10fps frame rate).
Image differences are used in the above map just to see the
correlation between intensity differences and 3D coordinate
differences of mapped points (i.e., a given point in frame (n)
with its corresponding one in frame (n + 1)). Figure 3(top)
presents the map of moving regions resulting from the frame
(841) (Fig. 1(right)) and the synthesized view corresponding
to frame (840) (see Figure 2). Additionally, the difference
between the consecutive frames, (|I840 − I841|), is presented

Fig. 3. (top) D(u,v) map of moving regions, from frames (840) and (841)
presented in Fig. 1. (bottom) Difference between these consecutive frames:
(|I840 − I841|) to illustrate their relative displacement.

in Figure 3(bottom) just to show the relative motion between
them.

V. EXPERIMENTAL RESULTS

Experimental results with real environments and different
vehicle speeds are presented. In all the cases large error
regions correspond to both moving objects and misregistered
areas. Several video sequences were processed on a 3.2 GHz
Pentium IV PC with a non-optimized C++ code. Although
the stereo head can work at a frame rate near to 30 fps
experimental results presented in this paper correspond to
video sequences recorded at 10 fps. In other words the
elapsed time between two consecutive frames is about 100
ms.

The proposed algorithm took, on average, 31 ms for
registering consecutive frames by using about 300 feature
points. Fig. 1 shows two frames of a crowded urban scene.
This scene is particularly interesting since a large set of
feature points over surfaces moving at different speed have
been extracted. In this case, the use of classical ICP based
approaches (e.g., [9]) would provide a wrong scene registra-
tion. The synthesized view obtained from (840) is presented
in Fig. 2. The quality of the registration result can be appre-
ciated in the map of moving regions presented in Fig. 3(top),
in particular pay attention at the lamp post, where there is
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Frame 298 Frame 299
Fig. 4. Feature points detected and tracked through consecutive frames.

Fig. 5. (left) Synthesized view of frame (298) (Fig. 4(left)). (right) Difference between consecutive frames: (|I298 − I299|) to illustrate their relative
displacement (pay special attention at the traffic lights and stop signposts).

a perfect registration between the 3D coordinates of these
pixels. Large errors at the top of trees or further away regions
are mainly due to depth uncertainty, which as mentioned
before grows quadratically with depth [18]. Wrong moving
regions mainly correspond to hidden areas in frame (n)
that are unveiled in frame (n + 1). Fig. 3(bottom) presents
the difference between consecutive frames (|I840 − I841|) to
highlight that although these frames (Fig. 1(top)) look quite
similar there is a considerable relative displacement between
them.

A different scenario is shown in the two consecutive
frames presented in Fig. 4. In that scene, the car is reducing
the speed to stop for a red light, three pedestrian are crossing
the street. Although the vehicle was reducing the speed there
is a relative displacement between these consecutive frames
(see Fig. 5(right)). The synthesized view of frame (298),
using the computed 3D rigid displacement, is presented in
Fig. 5(left). Finally, the corresponding moving regions map
is depicted in Fig. 6. Bounding boxes enclosing moving
objects can provide a reliable information to select ROIs
to be used by a classification process (e.g., a pedestrian
classifier). In this case, the number of ROIs would greatly
decrease compared to other approaches in the literature, such
as 108 ROIs in an exhaustive scan [21] or 2,000 ROIs in a
road uniform sampling [22] (see Fig. 7).

Horizon Line

Fig. 6. Map of moving regions (D(u,v)) obtained from the synthesized
view (̂I299) (Fig. 5(left)) and the corresponding frame (I299) (Fig.
4(right))—bounding boxes are only illustrative and have been placed using
the information of horizon line position as in [22].

VI. CONCLUSIONS

This paper presents a novel and robust approach for
moving object detection by registering consecutive clouds
of 3D points obtained by an on-board stereo camera. The
registration process is only applied over two small sets of 3D
points with known correspondences by using a RANSAC-
like technique based on the closed-form solution provided
by the unit quaternion method. Then, a synthesized 3D scene
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Horizon LineSearching grid

Fig. 7. (left) Candidate windows obtained from an exhaustive scan, about
108 windows [21]. (right) Candidate windows obtained by using a uniform
grid based approach, about 2,000 windows [22].

is obtained after mapping the whole set of points from the
previous frame to the current one. Finally, a map of moving
regions is generated by considering the difference between
current 3D scene and synthesized one.

As future work more evolved approaches for combining
registered frames will be studied; for instance, instead of
only using consecutive frames, a temporal windows including
three or five frames could help to filter out noisy areas.
Furthermore, color information of each pixel could be used
during the estimation of the moving region map.
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