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Abstract—The edge detection is yet a critical problem in many
computer vision and image processing tasks. The manuscript
presents an Holistically-Nested Edge Detection based approach
to study the inclusion of Near-Infrared in the Visible spectrum
images. To do so, a Single Sensor based dataset has been acquired
in the range of 400nm to 1100nm wavelength spectral band.
Prominent results have been obtained even when the ground
truth (annotated edge-map) is based in the visible wavelength
spectrum.

Index Terms—Edge detection, Contour detection, VGG, CNN,
RGB-NIR, Near infrared images.

I. INTRODUCTION

Image edge detection has been a long-standing problem in

computer vision, even nowadays when powerful deep learning

algorithms have been proposed edge detection still motivates

researchers working on this topic. The simplified feature

extraction from a given image, either based on the intensity

changes of luminosity, color or texture in other words image

edge detection is present in most of computer vision based

applications. Hence, the usage of a proper edge detection

algorithm could represent a reduction on the processing time

and/or an increase in the quality of results in image processing

tasks such as object recognition (e.g., [1], [2]), registration [3],

segmentation [4], medical imaging [5], just to mention a few.

Closely related to the edge detection problem we can

find the contour and boundary detection approaches. These

approaches, although similar, are intended to unveil the shape

of objects contained in the scene through the extraction of

closed contours. Different summaries have been proposed

in the literature during last two decades [6]–[8]; proposed

approaches can be classified as: pixel-based approaches,

edge-based approaches, region-based approaches and machine

learning based approaches. Most of current approaches are

based on machine learning, more specifically Deep Learning

(DL) based approaches, where Convolution Neural Networks

(CNN) are the most popular DL architecture.
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CNN based approaches are becoming the best option in

almost every computer vision problem. Since its high impact in

2012, in the large-scale visual recognition challenge [9] where

an error rate of 15.3% has been achieved, while the second

best entry reached a 26.2% error rate, they are being used

to solve challenging visual perception problems in domains

such as self-driving cars, mobile-robotics, surveillance, remote

sensing and so on [10].

Most of the approaches presented above have been intended

for detecting edges in images from the visible spectrum

(e.g., RGB images). The visible spectrum (VIS) ranges from

400nm to 700nm. Just after the visible spectrum we have

the Near Infrared (NIR) spectral band, which cover from

700nm till 1100nm. The NIR spectral band could be added to

visible spectrum (VIS) images to improve image processing

issues such as restoration [11], enhancement [12], de-hazing

[13] among others, to overcome the state-of-the-art results.

Additionally, since the last few years, the NIR sensor tech-

nology has been more and more accessible due to the market

competition, the mass access to the tech and the development

of the new cheap devices like [14].

Numerous advancement have been proposed with the com-

bined usage of VIS and NIR wavelength spectral bands

(through this work images from the visible spectral band will

be indistinctly referred to as RGB images or VIS images).

This paper tackles information from these two spectral bands

in order to detect edges present in the given image. These

images have been acquired by a Single Sensor Camera (SSC),

which capture in one-shot the VIS and NIR spectral bands

(from 400nm till 1100nm). The proposed approach is based on

the holistically-nested edge detection (HED) work presented

in [15], which is modified to tackle as an input a Multi-

Spectral image (MSI); it will be referred to as MSI-HED.

By adding information further the 700nm wavelength more

features are extracted and better edges detected. In Fig. 1, just

as an illustration, it can be appreciated that more edges are

detected when the multi-spectral image is considered. Note

how small details are recovered (e.g., mirror) when the MSI

is considered but they are missed if the VIS image is used.

The rest of the paper is organized as follow. In Section II a

description of edge and contour detection related approaches

is given. Then, the proposed approach is presented in Section
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Fig. 1. (1st row) Sample of images used for network training. (2nd row) Edge maps from networks trained with Visible and Multi-spectral images, ground
truth image is also depicted.

III; firstly, a short general description of the model is given

and then the proposed architecture and the loss function

are introduced. Experimental results are described in Section

IV; finally, conclusions and future work are presented in

Section V.

II. RELATED WORKS

Although the edge and contour detections have a long

history in the computer vision community (e.g., [6], [8]), in

this section just Deep Learning based edge and contour detec-

tion algorithms will be reviewed. Almost all the approaches

presented bellow are based on Convolutional Neural Networks.

There is just a method reviewed in this section, presented in

[16] and extended in [17], which is not based on DL; it is based

on the usage of another machine learning based technique (i.e.,

random decision forests). The main idea here is to map all the

structured labels at a given node into a discrete set of labels;

to this purpose, the authors propose an intermediate mapping

(IM), which plays a key role in the training stage randomly

generating and applying the training labels (Y ) at each node.

This process helps to speed up the computation and injects

additional randomness into the learning process.
Inspired in AlexNet [9] the authors of [18] present a DL

model for boundary detection. It was termed DeepEdge and

uses four different scale patches (64×64, 128×128, 196×196
and a full-size image), all these patches are resized before

training the modified AlexNet architecture. The DeepEdge

network uses just the first five convolutional layers of AlexNet;

from these five convolutional layers they extract features by

using max, average and center point pooling to assess the

presence of contours in small areas. In turn, they are connected

in a bifurcated sub network (two separately trained nets). The

first net is trained by using binary labels (classifying contour),

the second one is optimized as a regressor to predict the

fraction of human labelers agreeing to the contour presence

in a given point. Another deep learning contour detection

based method has been proposed in [19] (DeepContour); this

proposal uses the BSDS500 dataset [20], which consist of

a set of 2,000,000 image patches of 45 × 45. In order to

reach a value of 0.76 in F-measure, a 4 convolutional (conv)

layers plus 2 fully connected are set. Similar to DeepEdge, to

extract representative features, the first three conv layers use

normalization and max pooling, the last conv just use max

pooling. The cost of training is minimized by softmax loss.

The holistically-nested edge detection (HED) method [15],

which is an extension of its 2015 conference paper, goes much

deep than the previously presented DL based models. The

essential characteristic of this architecture is the usage of a

VGG network [21], deeply supervision and the end-to-end

training way (image to edge map prediction). The VGG16 (16

layers) is an architecture with an excellent performance due to

its fine parameter tuning; it has a lower computing cost, and a

better or equal characteristics extraction than AlexNet [9]. The

core contribution of this HED architecture is the holistically

nested network, which is intended to produce a prediction

from multiple scales extracted at the end of each blocks

termed side outputs (five side-outputs). Such side-outputs are

associated with a classifier and for the training purpose a class-

balanced cross-entropy loss function is defined. Going deeper

and inspired in the previous edge-contour detection models,

[22] design a DL model by modifying VGG16 (13 conv layes

and 3 fully connected layers). The modification consists of

keeping the 13 conv layers and cutting the last stage of VGG

(pooling and fully connected layers). Such 13 layers are split

up into 5 stages, at each stage, an output layer is added termed

as side-output for the deep supervision. Then, a cross-entropy

loss is applied to all five stage results and the last concatenated

one. For improving the results, an image pyramid is used

during testing, that is, a different scale input image is tested
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separately and then all resulting edge maps are up-sampled

with bilinear interpolation to finally average all maps in a final

prediction.

Recently, [23] propose a CNN model and attention-gated

conditional random field, termed attention-guided multi-scale

hierarchical deepNet (AMH-Net). It is intended for contour

detection, which can learn reacher multi-scale features than

CNN models. To be precise, in [15], as well as in [22], the

multi-scale feature maps are fused with the concatenation of a

1×1 convolution. In this case, such feature maps are learned to

combine the latent features by attention-gated CRF model—a

gate allows context-specific independence to be made explicit

in the graphical model [24], in this context it permit or block

the flow of information between different edge-map scales at

every pixel.

Finally, [25] propose a model able to learn more details

than previous approaches. Additionally, this architecture does

not require the post-processing stage, like non-maximum-

suppression, which is generally used in HED and RCF ( [22]).

The proposed model is based on the usage of Adversarial

Neural Networks (GANs), considering UNET [26] for the

generator and VGG16 for the discriminator, and inspired

in the image to image translation work [27]. The proposed

conditional GAN is similar to the work presented in [27],

where the difference is that feeding noise is not used as input

z.

III. PROPOSED APPROACH

This section presents the approach proposed to extract edges

from the given multispectral images. The proposed MSI edge

detector is based on [15]. Figure 2 presents an illustration of

the modified VGG16 architecture, which is described next.

Given a RGB or RGB-NIR input image, denoted as XSSR
i

(SSR: Spectral Sensitivity Range), and its respective ground

truth Y V IS
i (Y is a binary map obtained from RGB images),

the estimated edge map (Ŷi) is obtained as follow:

Ŷi = MSI-HED(XSSR
i , Y V IS

i ) (1)

where index i is used to specify the edge estimation for a

single image. More details on the proposed architecture as

well as in the loss function are given below.

A. Network Architecture

Figure 2 shows five subsets (stages) with the respective

convolutional hidden layers (e.g., conv1 1). This architec-

ture has been proposed in [21] and then modified by [15]

for the edge detection purpose (see description in Sec. II).

Based on that modified architecture, in the current work an

adaptation to the input layer is proposed in order to receive

Multi-Spectral images (RGB-NIR); then the XSSR size is

[image width, image height, image channels], where im-

age channels is 4. The size of the filters in each layers is

3× 3. The size of each side-output is the same as the ground

truth (e.g., side-output-5= [image width, image height, 1]).
In order to preserve such a size, in each side-output a convo-

lutional and a transpose convolution layers are incorporated.

The transpose convolution or deconvolution is added at the

end of such side-output to, according to [15], lead the best

performance restoring the size by the up-sampling process.

This process is like a bilinear interpolation but in a single

layer. Those side-outputs are then used to feed a loss function,

which is presented below.

B. Loss Function

As presented in Fig. 2, the MSI-HED architecture has 5
side-outputs (sdo) and 1 fuse-output (fso). Each of such

outputs has a predicted edge-map ŷmi . Hence, Ŷi = y
[1,...,M ]
i =

[y
(sdo 1)
i , y

(sdo 2)
i , ..., y

(sdo 5)
i , y

(fso)
i ], M = 6. Hence, the loss

function for MSI-HED is the same as the one presented in

[15], and Lsdo and Lfso are minimized with the objective

function, stochastic gradient descent, as follow:

(W,w, h)∗ = argmin(Lsdo(W,w) + Lfso(W,w, h)) (2)

where to get Lsdo(W,w), each single sdo has to compute the

image-level loss (�sdo) as follow:

�msdo(W,wm) = −β
∑

j∈Y+

log σ(yj = 1|X;W,wm)

− (1− β)
∑

j∈Y−

log σ(yj = 0|X;W,wm),
(3)

then,

Lsdo(W,w) =

M−1∑

m=1

�msdo(W,wm). (4)

Therefore, in Eq. 3, W is the collection of all network pa-

rameters and w is the sdo corresponding parameter, see Fig. 2

ellipsoidal-shape in green. β = |Y−|/|Y | and (1−β)=|Y+|/|Y |
(|Y−| and |Y+| denote the edge and non-edge ground truth

label sets).

To summarize σ(yj = 1|X;W,wi) is a sigmoid function

(σ(.)) on the activation values (amj ) at each pixel j for each

side-output. On the other hand, in Eq. 2, Lfso(W,w, h) =

Dist(Yi, y
(fso)
i ). As previously described, y

(fso)
i is the pre-

dicted edge-map trained by a fusion weights. Dist(., .), on the

other hand, is the distance between the fused predictions and

the ground truth label map, which is set to be cross-entropy

loss.

For the testing purpose, the MSI-HED method

gives the following predicted edge-maps, Ŷi =

[y
(sdo 1)
i , y

(sd 2)
i , ..., y

(sdo 5)
i , y

(fso)
i , y

(av)
i ]. The y

(av)
i is

the average of the 5 sdo and the fso predictions.

IV. EXPERIMENTS

This section presents the implementation setup and a de-

tailed description of the dataset used for the training and

testing stages. Additionally, quantitative and qualitative eval-

uations are presented.
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Fig. 2. VGG16 architecture modified by [15] and used in the current work.
The Side-output boxes, in green, have convolutional and deconvolutional
layers for the up-sampling purpose, see details in Sec. III.

A. Implementation

The implementation of the framework is performed by using

the open-source machine learning library TensorFlow [28].

Since MSI-HED implementation does not use VGG16 pre-

trained data, the training iterations are 90,000 with a 0.003
learning rate, 10 mini-batch size and 0.2 fusion weights initial-

ization. With a difference on the number of training iteration,

all the settings have the same parameters as in [15], which has

the best performance in F-Score on the BSDS500 validation

set. They experimented using different hyper-parameters, non-

linear functions and concludes that the parameters exposed

above are the best. Therefore, this work used such values.

The training process took about 5 days for both, the HED and

MSI-HED models, in a TITAN X GPU with the input image

size [480, 480, 4] (4 reefers to RGBN).

In order to enlarge the size of the data set a data augmenta-
tion process is performed. Firstly the given images are split up

into two parts; secondly, each of the obtained sub-images are

rotated in 15 different angles (cropping the maximum square

of a rotated image); and finally they are horizontally flipped,

which augmented the dataset by a factor of 64 . On the other

hand, as the supervised learning in DL needs the ground truth

(GT) for evaluating the results, a GT generation process is

performed on the visible spectrum images (RGB). This GT is

generated by using a crowdsourcing Internet-based application

labelbox.com to draw lines or polygons in every edges in the

scenario of such image detected by human labeler. In order to

avoid wrong edges, every single image is double checked by

a supervisor, which review and correct errors or lack of edges

in the scene.

B. Dataset

As the aim is the edge detection when an extra channel

(NIR) is considered, and due to the lack of a dataset for

this purpose, a dataset has been collected as a first step. The

acquired dataset contains 203 pairs of RGB and RGB-NIR

images, which are obtained by a couple of single sensor e-

con system camera (e-CAM40 CUMI4682 MOD-4MP). One

of these cameras has an infrared-cutoff-filter (IRCF), while

the second one does not use IRCF. The acquired dataset,

named SSMIHD (Single Sensor Multispectral Images in High

Definition), will be available by contacting the authors. From

the 203 pairs of images, 170 have been considered for the

training and the rest are considered for the testing purpose.

The camera maximum resolution, 2K, is set for the acquisition

(2688 × 1520). Nevertheless, for the registration purpose

(image acquired with the IRCF and image acquired without

the IRCF), the final image size is 2560×1440 and to the better

usage of NIR, the final SSMIHD images size is 1280 × 720
(High Definition size), half of the original size, after a splitting

in different channels. As mentioned above, the ground truth

has been obtained by using a crowdsourcing based tool on the

visible images (RGB). Hence to validate obtained results the

RGB and RGBN images are registered by [29].

The SSMIHD dataset contains urban scenarios, mainly

consisting of vegetation, road scenes and home infrastructures.
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(Sample #1) (Sample #2)

Fig. 3. Two samples of the SSMIHD images. (1st row) RGB images acquired by a Single Sensor Camera with an infrared-cutoff-filter (IRCF). (2nd row)
Corresponding NIR images.

The acquisition is carried out in the spring season in the range

of the day 10:00 till 18:00 when the sunset is at 20:00. Figure

3 presents two samples of such images with their respective

NIR images.

C. Results and Discussions

The edge detection accuracy is assessed by the measure-

ments considered in the state-of-the-art literature [15], [17],

[19]: Fixed Contour Threshold (ODS), Per-image Best Thresh-

old (OIS), and Average Precision (AP). As in [15], before the

evaluation, a non-maximal suppression process is applied to

obtain thinned edges. This post-processing stage is performed

by [17], a structured edge detection toolbox. For the accurate

evaluation of the MSI-HED model performance, from the

SSMIHD dataset, visible spectrum images are trained and

tested setting up similarly to MSI (just removing the NIR

images), This model is termed HED. From both testing stages,

two best predictions are considered, fused y
(fso)
i and averaged

y
(av)
i .

Fig. 4 shows a couple of images with the corresponding

edges extracted by the MSI-HED method for the qualitative

evaluation. The first row is the labeled GT of the images in

the Fig. 3. Both, RGB and RGBN based predictions, present

similar amount of edges like those presented in the GT. Fur-

thermore, both fused and averaged results present a plausible

edge even in challenging scenes (note in the illustration in the

second column how small details like windows in the buildings

are detected). However, in the first column, the first light post

(left to right) is not formed properly when the edge is predicted

from the VIS images (see in the top, the post through the

window). Nevertheless, both fused and averaged predictions

from the MSI images, when the light post is considered, has a

presence of edges in the whole of its contour. More illustrative

results are presented in Fig. 5.

Table I summarizes a statistic comparison in ODS, OIS and

AP of fused and averaged predicted edge-maps (ŷ
(fso)
i and

ŷ
(av)
i ) with VIS and MSI images. Even though the GTs are

annotated in the visible spectrum images, the results in both,

fused and merged, have the same value (0.8) according to OIS.

On the other hand, when the ODS evaluation measurement is

considered the HED overcome MSI-HED results in fused, but

just in 0.01; while in averaged both approaches have the same

results. On the contrary, when the AP evaluation measurement

is considered, the MSI-HED proposed model overcomes the

results from HED in 0.01 in both predictions.

TABLE I
QUANTITATIVE RESULTS OF FUSED AND AVERAGED PREDICTIONS, y

(fso)
i

AND y
(av)
i . HED REEFERS TO THE MODEL TRAINED AND TESTED WITH

VIS IMAGES; MSI-HED REEFERS TO THE PROPOSED MODEL TRAINED

WITH MSI IMAGES.

Output HED (RGB) MSI-HED (RGBN)
Edges ODS OIS AP ODS OIS AP
Fused 0.79 0.80 0.80 0.78 0.80 0.81

Averaged 0.78 0.80 0.82 0.78 0.80 0.83
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(Sample #1) (Sample #2)

Fig. 4. Edge-maps predicted by HED and MSI-HED to images in Fig. 3: (1st row) ground truth (manual annotation using labelbox; (2nd) fused prediction

(ŷ
(fso)
i ) in VIS image; (3rd) fused prediction (ŷ

(fso)
i ) in MSI image; (4th) averaged prediction (ŷ

(av)
i ) in VIS image; (5th) averaged prediction (ŷ

(av)
i ) in

MSI image.
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Fig. 5. Illustration of edges extracted in two pairs of images. (Input row) RGB and NIR images. (Fused row) Edge maps corresponding to fused predictions

(ŷ
(fso)
i ) by HED (left−side) and MSI-HED (right−side). (Averaged row) Edge maps corresponding to averaged predictions (ŷ

(av)
i ) by HED (left−side)

and MSI-HED (right− side).
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V. CONCLUSIONS AND FUTURE WORKS

A Multi-Spectral Deep Learning model based on [15] has

been proposed. Quantitative results show that the proposed

approach reaches the same performance as the one obtained

with HED model (just training the network with images from

the visible spectrum). It should be mentioned that these eval-

uations have been performed using as ground truth a dataset

annotated in the visible spectrum (users were given the images

from the visible spectrum to draw objects’ edges). In spite of

the fact both, MSI-HED and HED, result in similar quantitative

values, qualitatively MSI-HED gives better results since it was

able to extract more edges from the given scenes (i.e., small

details are correctly recovered). Hence, it is expected, that

training the MSI-HED model with edges from multispectral

images will help to obtain better quantitative results. As a

future work we are going to explore the possibility of training

the MSI-HED model with ground truth from multi-spectral

images as well as from images resulting from the fusion

of different channels. Furthermore, different models will be

evaluated to obtain the best architecture for the MSI edge

detection.
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using the near-infrared,” in Proc. IEEE International Conference on
Image Processing (ICIP), no. LCAV-CONF-2009-026, 2009.

[14] Z. Chen, X. Wang, and R. Liang, “Rgb-nir multispectral camera,” Optics
express, vol. 22, no. 5, pp. 4985–4994, 2014.

[15] S. Xie and Z. Tu, “Holistically-nested edge detection,” International
Journal of Computer Vision, vol. 125, no. 1-3, pp. 3–18, 2017.

[16] P. Dollár and C. L. Zitnick, “Structured forests for fast edge detection,” in
Proceedings of the IEEE International Conference on Computer Vision,
2013, pp. 1841–1848.

[17] ——, “Fast edge eetection using structured forests,” IEEE transactions
on pattern analysis and machine intelligence, vol. 37, no. 8, pp. 1558–
1570, 2015.

[18] G. Bertasius, J. Shi, and L. Torresani, “Deepedge: A multi-scale bi-
furcated deep network for top-down contour detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 4380–4389.

[19] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, “Deepcontour: A
deep convolutional feature learned by positive-sharing loss for contour
detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3982–3991.

[20] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2010.161

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer convo-
lutional features for edge detection,” in Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on. IEEE, 2017, pp. 5872–
5881.

[23] D. Xu, W. Ouyang, X. Alameda-Pineda, E. Ricci, X. Wang, and N. Sebe,
“Learning deep structured multi-scale features using attention-gated crfs
for contour prediction,” in Advances in Neural Information Processing
Systems, 2017, pp. 3961–3970.

[24] J. Winn, “Causality with gates,” in Artificial Intelligence and Statistics,
2012, pp. 1314–1322.

[25] Z. Zeng, Y. K. Yu, and K. H. Wong, “Adversarial network for edge
detection,” in International Conference on Informatics, Electronics &
Vision (ICIEV), 2018.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[27] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE, 2017, pp.
5967–5976.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[29] G. Evangelidis, “Iat: A matlab toolbox for image alignment,” 2013.

273


