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1Escuela Superior Politécnica del Litoral, ESPOL,
Facultad de Ingenierı́a en Electricidad y Computación, CIDIS,
Campus Gustavo Galindo, 09-01-5863, Guayaquil, Ecuador

2Computer Vision Center, Edifici O, Campus UAB,
08193, Bellaterra, Barcelona, Spain

3BAE Systems,
Massachusetts, USA

plsuarez@espol.edu.ec, sappa@ieee.org, bvintimi@espol.edu.ec, riad.hammoud@baesystems.com

Abstract

This paper proposes a novel approach to remove haze
degradations in RGB images using a stacked conditional
Generative Adversarial Network. It employs a triplet of
GAN to dehaze each color channel independently. A multi-
ple loss functions scheme, applied over a conditional proba-
bilistic model, is proposed. The proposed GAN architecture
learns to remove the haze, using as conditioned entrance,
the images with haze from which the clear images will be
obtained. Such formulation ensures a fast model training
convergence and a homogeneous model generalization. Ex-
periments showed that the proposed method generates high-
quality dehazed images.

1. Introduction

The appearance of outdoor images is easily affected by
natural phenomena such as fog, dust, rain, snow, etc. This
reduces considerably the visibility of the objects in the im-
ages, therefore, processes such as feature detection, seg-
mentation or object recognition, among others, will not be
able to obtain results that meet the required objectives. The
outdoor scenes mostly suffer from low contrast and poor
visibility due to adverse atmospheric conditions allowing
the particles in the air to disperse the light present in the at-
mosphere. One of the atmospheric effects that occur is the
haze, which is independent of the brightness of the scene
and generates effects of attenuation. It is affected by the
ambient light at the moment of the acquisition of the image.
It is necessary to consider that at a greater distance from the
focus of the camera most diffuse the image becomes.

Different approaches on image quality improvements
have been made, including those that specialize in remov-
ing fog; some focus on working with depth or with multiple
views of the same image as presented by [19]. In [9] a tech-
nique to improve casual outdoor photographs by combining
them with existing georeferenced digital terrain and urban
models is proposed. This approach uses a registration pro-
cess to align a photograph with that model. These methods
typically involve multi-step approaches that use depth in-
formation for removal of those degradation effects. Most
image dehazing methods only consider to use hard thresh-
old assumptions or user input to estimate atmospheric light.
Artificial lighting or applied adaptive filters [12] are also
considered in some dehazing methods. However, error es-
timation of atmospheric light probably affects the dehazing
results.

The effect of haze on image quality is as a result of a
random scattering of light and hence affects all pixels of
the image. In recent years, deep learning has been exten-
sively used in a wide range of fields. In deep learning,
Convolutional Neural Networks are found to give the most
accurate results in solving real world problems. Among
the different networks’ architectures, Generative Adversar-
ial Networks (GANs) have obtain outstanding results to
resolve problems like colorization [22], face generation,
super-resolution [10], text-to-image synthesis [15], cross-
spectral similarity [21].

In the particular problem tackled in this work for dehaz-
ing a RGB representation the usage of a GAN architecture
is proposed. In our approach every channel is mapped into
a three dimensional space, using an stacked GAN model to
speed up convergence. The manuscript is organized as fol-
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lows. Section 2 introduces works related with the image
dehazing problem as well as the basics concepts and nota-
tion of GAN networks. The proposed approach is detailed
in Section 3. Experimental results with a set of real images
are presented in Section 4. Discussions on the usage of NIR
images with the proposed GAN architecture are provided in
Section 5. Finally, conclusions are given in Section 6.

2. Related Work
Image dehazing has been studied for more than two

decades (e.g., [17]); different approaches can be found in
the literature. Some of the approaches start from the usage
of images from other spectral band to extract certain char-
acteristics that serve to remove the haze. In [1] a non-local
haze-lines for image dehazing is proposed; this method is
based on the observation that the number of distinct colors
in an image is orders of magnitude smaller than the num-
ber of pixels, based on the assumption that an image can be
faithfully represented with just a few hundreds of distinct
colors. Another model based approach has been presented
by [23]; this work proposes a selection of an atmospheric
light value that is directly responsible for the color authen-
ticity and contrast of the resulting image. Additionally, they
propose a fast transmission estimation algorithm to be more
efficient and reduce the process time. Also using a haze
model, [4] presents an image-dehazing technique that uses
a fusion-based variational image-dehazing (FVID) method,
which combine the minimized outputs of two energy func-
tionals to produce a haze-free version. Ju et al. [8] present
an improvement by addressing the weaknesses inherent of
the atmospheric scattering models; the authors develop a
way to remove the haze using an adaptive method for ad-
justing scene transmission based on scene features. The in-
put image is partitioned into several scenes based on the
haze thickness. Then, they obtain the rough scene trans-
mission map by maximizing the contrast in each scene and
then remove the haze using the proposed adaptive method.
Similarly to the previous work, Fattal et al. [3] propose to
estimate the optical transmission in hazy scenes, given a sin-
gle input image; the scattered light is eliminated to increase
scene visibility and recover haze-free scene contrasts. Re-
cently, in [24], a fast algorithm for single image dehazing is
proposed based on linear transformation, by assuming that
a linear relationship exists in the minimum channel between
the hazy image and the haze-free image.

Lately, novel image dehazing approaches based on deep
learning techniques have been proposed obtaining excel-
lent results. In [11] a model based on a reformulated at-
mospheric scattering model is proposed, instead of estimat-
ing the transmission matrix and the atmospheric light sep-
arately. Ren et.al. [16] presents a multi-scale deep neural
network for single-image dehazing by learning the map-
ping between hazy images and their corresponding trans-

mission maps. The proposed algorithm consists of a coarse-
scale net which predicts a holistic transmission map based
on the entire image and a fine-scale net that refines results
locally. Cai et.al. [2] proposes a trainable end-to-end sys-
tem called DehazeNet, for medium transmission estimation.
DehazeNet takes a hazy image as input, and outputs its
medium transmission map that is subsequently used to re-
cover a haze-free image via atmospheric scattering model.
More recently the Generative Adversarial Network (GAN)
framework has been used obtaining appealing results. In
[27] the authors propose a unified single image dehazing
GAN network that jointly estimates the transmission map
and performs dehazing; the network is trained using syn-
thetic images and a two-terms loss function. The first term
of the loss function is a pixel-wise Euclidean distance, while
the second term consider perceptual information. In the cur-
rent work a loss function based on multiple terms is pro-
posed. Additionally, in the GAN architecture a stacking
strategy is proposed to speed up the learning process.

Generative Adversarial Networks are a type of deep
learning approaches, which have gained outstanding results
in recent years. There are two basic things that can be done
with the generative model. One is to take a collection of
points and infer a function that describes the distribution
that generated them. The second is to build a generative
model which is to take a machine that observes many sam-
ples from a distribution and is able to create more samples
from the same distribution. They allow a network to learn
to generate data with the same internal structure as other
data. It is a framework presented on [6] for estimating gen-
erative models via an adversarial process, in which simulta-
neously two models are trained: a generative model G that
captures the data distribution, and a discriminative modelD
that estimates the probability that a sample came from the
training data rather than G. The training procedure for G is
to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In
the space of arbitrary functions G and D, a unique solution
exists, with G recovering the training data distribution and
D equal to 1/2 everywhere. According to [14], to learn the
generators distribution pg over data x, the generator builds
a mapping function from a prior noise distribution pz to a
data space G(z; θg). The discriminator, D(x; θd), outputs a
single scalar representing the probability that x came from
training data rather than pg . G and D are both trained si-
multaneously, the parameters for G are adjusted to mini-
mize log(1 − D(G(z))) and for D to minimize logD(x)
with a value function V (G,D):

min

G

max

D
V (D,G) = Ex∼p data(x)[logD(x)] + (1)

Ez ∼p data(z)[log(1−D(G(z)))].

Generative adversarial nets can be extended to a condi-



tional model if both the generator and discriminator are con-
ditioned on some extra information y. We can perform the
conditioning by feeding y into both discriminator and gen-
erator as additional input layer. The objective function of a
two-player minimax game would be as:

min

G

max

D
V (D,G) = Ex ∼p data(x)[logD(x|y)] + (2)

Ez ∼p data(z)[log(1−D(G(z|y)))].

There are some techniques to improve the effective-
ness of generative adversarial networks for semi-supervised
learning, according to [18] that proposes some techniques,
like feature matching which addresses the instability of
GANs establishing a new objective for the generator that
prevents it from over-training maximizing the output of the
discriminator, requiring to generate data that matches the
statistics of the real data. Considering the use of conditional
generative networks models, this work propose the usage
of an architecture similar to the one presented in [20], but
by including the variation of a stacked multiple generator-
discriminator networks, inspired on the work presented in
[7], which consists in a top-down stack of GANs, each de-
signed to generate lower-level representations conditioned
on higher level representations. We propose a stacked learn-
ing process of the generator-discriminator to accelerate the
convergence of the network, this stacking strategy allows
accelerating the learning process to generate a clear image
representation from those affected by hazing. This work
also proposes to include a multiple loss term for discrimi-
nator which make the learning process continuous and dif-
ferentiable and consequently the times of convergence for
the generalization of learning are improved.

3. Proposed Approach
The proposed approach is based on a of generative

model, which take a collection of hazing patches and form
some image representation without the hazing. Generative
adversarial networks (GAN) generates the solution, rather
than finding a function; based on this principle we propose
the usage of a stacked network architecture with a multiple
loss to improve the generalization learning model that al-
lows accelerate the diversity obtained in the multiple level
of training. A l1 regularization term has been added at every
layer of the generator network in order to prevent the coef-
ficients to fit so perfectly to overfit and to introduce more
robustness to the generalization of the model; additionally,
it helps reducing the time to reach a well trained network.

A stacked conditional network based architecture is se-
lected due to: i) the input that is introduced to the network
comes from a conditional predefined latent space that opti-
mizes the higher-level features obtained from the generator
model; ii) the architecture infer models in a competitive

setting until it reaches some level of accuracy iii) the dis-
criminator network is a perfect loss function for a generative
model; iv) it has a fast convergence capability. The network
is intended to learn to generate new non hazing images from
an conditional latent distribution. In our case, the generator
network has been modified to use feature hierarchical repre-
sentation; we use three levels of stacking learning process.
Additionally, the model has been designed to use a multiple
loss function. In order to optimize the model generalization,
the GAN framework is reformulated for a conditional gen-
erative image modeling tuple. In other words, the generative
model G(z; θg) is trained from an haze image and contrary
to the original GAN model formulation, the random noise
z is not used; with the assumption that the randomness has
already been preserved by the conditioning variables pro-
vided by the hazy images, in order to produce a clear dehaze
RGB image. The discriminative model D(z; θd) is trained
to assign the correct label to the generated dehaze RGB im-
age, according to the provided clear color image, which is
used as a ground truth. Variables (θg) and (θd) represent
the weighting values for the generative and discriminative
networks.

The model has been defined with a multi-term loss func-
tion (L) conformed by the combination of the adversarial
loss plus the intensity loss (MSE), the structural loss (SSIM)
and the image quality loss (IQ). This combined loss func-
tion has been defined to avoid the usage of only a pixel-wise
loss to measure the mismatch between a generated image
and its corresponding ground-truth image. This multi-term
loss function is better designed to human perceptual criteria
of image quality, which is detailed below.

The adversarial loss is designed to minimize the cross-
entropy to improve the texture loss :

LAdversarial = −
∑
i

logD(Gw(Iz|y), (Ix|y), (3)

where D and Gw are the discriminator and generator of the
real Ix|y and generated Iz|y images conditioned by the near
image in each channel of the Stacked Gan Network.

The intensity loss is defined as:

LIntensity =
1

NM

N∑
i=1

M∑
j=1

(RGBei,j −RGBgi,j)2, (4)

where RGBei,j is the estimated RGB representation and
RGBgi,j is the ground-truth RGB image. This loss mea-
sures the difference in intensity of the pixels between the
images without considering texture and content compar-
isons. This loss penalizes larger errors, but is more tolerant
to small errors, without considering the specific structure in
the image.



Conditional Generative Adversarial Network Model :
(G) Triplet Level Dehazing Generator Network 

(D) Discriminator Network
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Figure 1. Illustration of the proposed triplet GAN architecture used for image dehazing.

To address the limitations of the simple intensity loss
function, the usage of a reference-based measure is pro-
posed. One of the reference-based index is the Structural
Similarity Index (SSIM) [26], which evaluates images ac-
counting for the fact that the human visual perception sys-
tem is sensitive to changes in local structure; the purpose of
using this index as a function of loss is to help the learn-
ing model to produce a visually improved image, because
this index defines the structural information in an image as
those attributes that represent the structure of objects in the
scene, independent of the average luminance and contrast.
The structural loss for a pixel p is defined as:

LSSIM =
1

NM

P∑
p=1

1− SSIM(p), (5)

where SSIM(p) is the Structural Similarity Index (see [26]
for more details) centered in pixel p of the patch (P ).

Another loss function that proposes this work is based
on the universal image quality index, the method proposed

by [25] was designed to model any image distortion via
a combination of three factors: loss of correlation, lumi-
nance distortion, and contrast distortion. Let x = {xi |
i= 1,2 . . . . . . N } and y={yi | i= 1,2 . . . . . . N } be the orig-
inal and the test image signals respectively. The proposed
quality index is defined as :

Quality =
σxy
σxσy

· 2 x y

(x)2 + (y)2
· 2 σxσy
σ2
x + σ2

y

, (6)

where the first component of the equation is the correla-
tion coefficient between x and y. The second component
measures how close the mean luminance is between x and
y. The third component measures the similarity of the con-
trasts of the compared images. The main reason to use this
quality index as a loss function is its strong ability to mea-
sures the structural distortions existing in the images with
haze. It is important to bear in mind that because the signals
of the images are non-stationary it is preferable to evaluate



the quality of the images by measuring their statistical char-
acteristics in a local way and then combine them all together
in a single measurement of image quality, for which uses a
sliding window in a similar way to when a convolution is
carried out, in such a way that the whole image is scanned
pixel by pixel by moving the sliding window of size BxB
through all the rows and columns of the image. If there are
a total of M steps, at the j-th step the local quality index Qj
is computed, then the overall quality index is given by :

Q =
1

M

M∑
j=1

Qj (7)

Then we can formulate the quality loss function as:

LQ =
1

M

M∑
j=1

1−Qj , (8)

The final loss function (L) used in this work is the ac-
cumulative weighted sum of the individual adversarial, in-
tensity, structural and quality loss functions:

Lfinal = 0.50LAdversarial + 0.2LIntensity+
+ 0.15LSSIM + 0.15LQ. (9)

The proportion assigned to each loss has been defined
based on the variability of the values obtained by each of
the losses during the training process; therefore, the losses
with greater fluctuation were assigned a greater proportion
of impact on the optimization of the model.

The Stacked GAN network has been trained using
Stochastic AdamOptimazer since it is well suited for prob-
lems that are large in terms of data and/or parameters,
very appropriate for non-stationary objectives and for prob-
lems with very noisy/or sparse gradients. Also the Hyper-
parameters have intuitive interpretation and typically re-
quire less tuning, prevents overfitting and leads to conver-
gence faster. Furthermore, it is computationally efficient,
has little memory requirements, is invariant to diagonal
rescaling of the gradients. The image dataset was normal-
ized in a (-1,1) range. It is important to consider that the
network receives at each level of the triplet model each
channel of the RGB image with fog, therefore it was not
required to add Gaussian noise to generate the variability
of the resulting images of the generating network added
to each layer of the proposed triplet model. The follow-
ing hyper-parameters were used during the training process:
learning rate 0.00002 for the generator and 0.00004 for the
discriminator networks respectively; epsilon = 1e-08; expo-
nential decay rate for the 1st moment momentum 0.3 for
discriminator and 0.3 for the generator; weight initializer
with a standard deviation of 0.0004582; l1 weight regular-
izer; weight decay 1e-2; leak relu 0.18 and patch’s size of
32×32.

The triplet architecture, see Fig. 1, maintains similar
structure found in [20]. Basically in the architecture a new
layer of learning was added, as well as the depth of the
learning layers was increased—the learning model is con-
formed by convolutional, de-convolutional, relu, leak-relu,
fully connected and activation function tanh and sigmoid
for generator and discriminator networks respectively. Ad-
ditionally, every layer of the model uses batch normaliza-
tion for training any type of mapping that consists of mul-
tiple compositions of affine transformation with element-
wise nonlinearity and do not stuck on saturation mode. It
is very important to maintain the spatial information in the
generator model, there is not pooling and drop-out layers
and only the stride of 1 is used to avoid downsize the image
shape. To prevent overfitting we have added a l1 regulariza-
tion term (λ) in the generator model, this regularization has
the particularity that the weights matrix end up using only
a small subset of their most important inputs and become
quite resistant to noise in the inputs.

The generator (G) and discriminator (D) are both feed-
forward deep neural networks that play a min-max game
between one another. The generator takes as input each
channel of the haze image and transforms it into the form
of the data we are interested in imitating, in our case a RGB
dehazing image. The discriminator takes as an input a set of
data, either real image (z) or generated image (G(z)), and
produces a probability of that data being real (P (z)). The
discriminator is optimized in order to increase the likeli-
hood of giving a high probability to the real data (the ground
truth given image) and a low probability to the fake gener-
ated data (wrongly clarified haze image), as introduced in
[14]; thus, the conditional discriminator network is updated
as follow:

5θd
1

m

m∑
i=1

[logD(x(i))+ log(1−D(G(y(i), z(i))))], (10)

where m is the number of patches in each batch, x is the
ground truth image, y is the dehazed RGB image generated
by the network and z is the random Gaussian sampled noise.
The weights of the discriminator network (D) are updated
by ascending its stochastic gradient. On the other hand, the
generator is then optimized in order to increase the proba-
bility of the generated data being highly rated, it is updated
as follow:

5θg
1

m

m∑
i=1

log(1−D(G(y(i), z(i)))), (11)

where m is the number of samples in each batch, y is the
dehazed RGB image generated by the network and z is the
random Gaussian sampled noise. Like in the previous case,
the weights of the generator network (G) are updated by
descending its stochastic gradient.



Table 1. Angular Errors (AE), Mean Squared Errors (MSE), Structural Similarities (SSIM) and , Image Quality Index(Q Index) obtained
with the proposed Proposed Stacked Conditional GAN architecture by using different loss functions (SSIM and Q index values, the bigger
the better).

AE MSE SSIM Q Index
Training Light Haze Dense Haze Urban Dense Haze Light Haze Dense Haze Light Haze Dense Haze

Proposed Stacked CGAN 7.18 7.11 21.96 23.75 0.72 0.69 0.62 0.59
with LAdversarial + LIntensity
Proposed Stacked CGAN 7.12 7.03 20.97 20.74 0.78 0.72 0.64 0.61
with LAdversarial + LSSIM
Proposed Stacked CGAN 6.32 6.24 19.65 20.08 0.80 0.77 0.68 0.66
with LAdversarial + LIntensity + LSSIM
Proposed Stacked CGAN 5.95 6.12 18.74 19.21 0.84 0.80 0.71 0.68
with Lfinal

Light Haze Light Haze Dense Haze Dense Haze Light Haze Light Haze Dense Haze Dense Haze

Figure 2. (1st row Haze patches. (2nd row) Results from the proposed approach (Loss Function: Lfinal). (3rd row) Ground truth images.

4. Experimental Results

The proposed architecture has been evaluated using real
hazed images and their corresponding clear RGB represen-
tations obtained from [13]. Figure 3 presents four images
from this dataset, where ground truth image can be appre-
ciated on top-left while different real hazed images are de-
picted on (b), (c) and (d). See more details about data set
generation in [13]. From all these images 85000 pairs of
patches of (32×32 pixels) have been cropped both, in the
hazed images as well as in the corresponding clear RGB
images. Additionally, 8500 pairs of patches have been also
generated for validation. On average every training process
took about 60 hours. Some patches, with the corresponding
result obtained with the proposed approach are depicted in
Fig. 2; just for making easier the evaluation of results from
the proposed approach patches have been split up into Light
Haze and Dense Haze.

The quantitative evaluation consists of measuring sev-
eral metrics with the results obtained with the proposed
Stacked GAN approach when different combinations of the
proposed loss functions where considered; one of the met-
rics consists of measuring at every pixel the angular error
(AE) between the obtained result (RGBoi,j) and the cor-
responding ground truth value (RGBgi,j). AE is included
since this measure is quite similar to the human visual per-

ception system, [5]—AE is probably the most widely used
performance measure in color constancy research. Addi-
tionally, the Mean Squared Error (MSE), the Quality In-
dex (QIndex) and the Structural Similarity (SSIM) metrics
are also considered in this quantitative evaluation. On the
contrary to AE and MSE, which can be considered as pixel
level evaluation metrics, the SSIM and QIndex are meth-
ods for evaluating the perceived quality of the results. The
SSIM provides a measurement of local image quality over
space while QIndex models the image distortion relative to
the reference image as a combination of three factors: loss
of correlation, luminance distortion, and contrast distortion.
These metrics have a high degree of sensitivity to measure
to image degradations, therefore, are the more appropriate
to this type of quantitative evaluation.

With the metrics mentioned above combinations of the
different loss functions are evaluated, results are provided
in Table 1. It can be appreciated that in all the cases the
results obtained with the final loss proposed with Stacked
Conditional GAN are better than those obtained with the
other combination of losses, because are not based solely on
the difference of the information of the pixels, are based on
the high-level characteristics of the images for which they
are able to reconstruct better the fine details in comparison
with the methods trained only by distance value of pixels. In



(a) (b)

(c) (d)

Figure 3. Set of RGB images from an indoor environment: (a) Ground truth image; (b), (c) and (d) Real images with different haze levels.

addition, these losses, being perfectly differentiable, allow
for a better optimization of the network, thus accelerating
the convergence process. Just as illustrations, a few RGB
images from Light Haze and Dense Haze categories, gener-
ated with the proposed Stacked GAN network, are depicted
in Fig. 2 for qualitative evaluation.

5. Discussion on the usage of NIR images
The approach presented in this paper requires the exis-

tence of ground truth data, which is not always possible. In
the current work, thanks the authors of [13], we were able
to get real images with and without haze for training the
proposed network. However, the size of this data set is a
limitation for the proposed approach; in order to tackle this
drawback synthetic hazy images, obtained by using an at-
mospheric scattering model, could be used. The problem
with these kind of approaches lies on the selection of scat-
tering model. Another option to tackle the data set draw-
back is based on the usage of images from other spectral
band. In this direction, we have started exploring the possi-
bility of using NIR information to remove haze in RGB im-
ages, although this work is still in progress, due to the large
amount of time required for algorithm training, we are con-
fident to obtain good results. The approach we are testing
now consists of using a GAN network architecture where
the generator tries to remove haze, while the discriminator
evaluates the obtained dehazed images with respect to the
corresponding NIR image. Actually, the evaluation in the
discriminator is not performed at image level but at image
characteristic (we are testing image sharpness). This NIR-
RGB GAN based dehazed approach can be trained with data
sets such as the one used in [22] for NIR image colorization.

6. Conclusions
This paper tackles the challenging problem of generating

clear RGB representations from hazed images by using a

novel Stacked Conditional Generative Adversarial Network
model. Results have shown that in most of the cases the
network is able to obtain reliable clear RGB representations.
As mentioned in the discussion section, this approach has as
a limitation the need of having ground truth dehazed images
for training, as future work, actually, as work in progress
we have proposed the usage of a similar GAN architecture,
but feed with NIR images in the discriminator to overcome
this limitation. Future work will also consider other loss
functions to improve and accelerate the training process.
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