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Abstract— Driver assistance and safety systems are getting
attention nowadays towards automatic navigation and safety.
Optical flow as a motion estimation technique has got major roll
in making these systems a reality. Towards this, in the current
paper, the suitability of polar representation for optical flow
estimation in such systems is demonstrated. Furthermore, the
influence of individual regularization terms on the accuracy
of optical flow on image sequences of different speeds is
empirically evaluated. Also a new synthetic dataset of image
sequences with different speeds is generated along with the
ground-truth optical flow.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) can benefit

in many ways from the visual motion information for appli-

cations such as 3D reconstruction, moving object detection,

egomotion estimation, autonomous navigation, etc. The well

known apparent motion estimation tool is optical flow. It

is the two-dimensional vector field of the displacement

information for each pixel in the image. The research on

optical flow started long back, the seminal approaches [1] and

[2] were proposed in 1981. It has got much attention again

the last decade. Several approaches have been proposed in the

literature to estimate the optical flow. They can be majorly

classified into local or global methods. Local methods [2]

give sparse flow fields, whereas global approaches [1] give

dense flow fields. Here our interest is on global approaches

that give dense flow fields even in the absence of enough

information in some image regions. Typically, the global

methods are formulated as an energy minimization problem

that considers the energy in the whole image. The energy

function contains a data term which matches some properties

in one image with the other image; and a regularization term

to make the problem well posed. The first global approach

formulated as a variational energy minimization is proposed

in [1].

An overview of the developments upto the times can

be found in [4] and [5]. In [4], an empirical evaluation

of the performance of optical flow algorithms on complex

image sequences is presented. Galvin et al. [6] evaluate eight

different optical flow algorithms. Recently, McCane et al.

[7] proposed a benchmarking set of image sequences and

tools for the purpose of evaluating optical flow algorithms.

A major obstacle in performing any empirical study in

computer vision is obtaining ground truth data. Baker et al.

[8] has recently proposed few sequences with ground-truth

and an evaluation methodology.

There have been many attempts to improve the accuracy

of global optical flow methods (e.g., [15], [16]) since the

proposal of seminal methods. Attempts have been done to

improve the data term [13], the regularization term (e.g., [11],

[12], [14]), the objective function itself, and also the way of

minimization. In [5], a detailed overview of the developments

in the respective parts of optical flow is given. A recent paper

[3] explores concepts such as pre-processing, coarse-to-fine

warping, graduated non-convexity, interpolation, derivatives,

robustness of penalty functions and median filtering. In

[3], an improved model underlying a weighted non-local

term based median filtering is proposed. Recently, temporal

coherence is incorporated in the flow estimation [10]. Efforts

to combine both local and global methods [9] are also made.

In such efforts, the advantages from both approaches are

combined resulting in more accurate optical flow. Unlike

optical flow estimation on traditional datasets, an approach

for optical flow estimation of specular dataset is proposed in

[17]. Also an effort to represent flow field in polar space is

made in [18].

Despite the volume of research on the topic of optical flow,

little work has been done looking for the most efficient way

to combine data and regularization term. Since the regular-

ization term plays a major role in optical flow computation,

there are lot of works proposing different regularization

functions, but it is not clear how to find the right balance

between data term and the regularization term. Up to our

knowledge, almost no attempt has been done to tune the

weight of the regularization term based on the properties of

the image sequence. The weight of the regularization term

is being set empirically for the minimal error.

The work in this paper is motivated by the adaptation

of the weight of the regularization term according to some

feature of the given sequence, specifically the speed in

the image sequence captured by a vehicle camera. Our

work empirically analyzes the variation in accuracy of the

flow field to the variations in weights of the regularization

terms in the polar representation. The influence of different

regularization terms is also analyzed. Also new synthetic

image sequences with ground-truth optical flow are generated

and an evaluation framework using these synthetic scenarios

is presented.

The current paper is organized as follows. First, a polar

representation of flow vectors is explored in contrast to

the cartesian representation, and its suitability to ADAS
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domain is discussed in section II. Next, an overview of polar

represented optical flow estimation is presented in section

III. The generation of image sequences and corresponding

ground-truth flow fields are detailed in section IV. The

empirical analysis and discussion are presented in section

V. Finally, the paper is concluded in Section VI.

II. POLAR VERSUS CARTESIAN IN THE ADAS

FIELD

The natural representation of a vector is by its magni-

tude and orientation. As presented in [18], the two polar

components show significant statistical difference compared

to two cartesian components, when their spatial derivatives

distribution from a flow field is analyzed. Also, two polar

components show more statistical independence among them

when mutual information between derivatives of the compo-

nents are analyzed and compared to the mutual information

of cartesian components in [18] and [19]. We follow previous

studies using synthetic sequences of urban road scenarios

(see Fig. 2) when cartesian and polar representations are

used to depict motion information. Figure 1 shows joint

histograms of flow derivatives in cartesian and polar co-

ordinates. These joint histograms are then used for com-

puting the mutual information (MI) between the coordinate

components. Small values of MI indicate more statistical

independence. Hence, as shown in Fig. 1 (see MI at the

top of every illustration), it can be concluded that, it is more

appropriate to represent the flow field in a polar coordinate

system.
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Fig. 1. Joint histograms of flow derivatives in cartesian and polar
coordinates of a synthetic sequence of an urban road scenario. On top of
each figure MI value is depicted.

In [19], a polar representation of flow vectors in optical

flow estimation is proposed and its implications are also

studied. The authors claim that flow fields obtained by a polar

representation are as accurate as those obtained by the state

of the art approaches using a cartesian representation, when

evaluated on traditional datasets. As an advantage of polar

representation, they also proposed a way of regularizing the

different axes independently. This optical flow formulation

can be adopted to suit different kinds of datasets such as

specular and fluid flow datasets. In the context of vehi-

cle driving, the motion of vehicle camera mainly involves

translation along the optical axis considering the camera is

forward faced. On these kinds of scenarios, the computed

flow fields are divergent. If we assume pure translation, then

the orientation of the flow vectors vary less compared to

the magnitude, that vary much depending on the speed of

the vehicle. Hence, it is intuitive that the polar optical flow

method suits well for the context of ADAS.

III. OVERVIEW OF POLAR OPTICAL FLOW

The basic variational formulation of optical flow proposed

by Horn and Schunck [1] is given by:

E(u, v) =

∫ ∫

Ω

{(I(x+ u, y + v, t+ 1)− I(x, y, t))
︸ ︷︷ ︸

Data Term

(1)

+ α (|∇u1|
2 + |∇u2|

2

︸ ︷︷ ︸

Regularization

)} dx dy

where the energy function is minimized for the flow vectors

(u, v). The pixel (x, y) ∈ Ω in time t is represented by

the intensity I(x, y, t). And α is a factor that weights the

regularization term. The data term is the brightness constancy

assumption and the smoothness term assumes the estimated

flow field varies smoothly all over the image. The energy

function can be minimized by applying Euler-Lagrange equa-

tions [16] or alternative methods [15].

As discussed in section II about the polar representation,

[18] proposes to represent a vector in polar form as:

flow(x, y) = (m(x, y), θ(x, y)) (2)

where m(x, y) denotes the magnitude and θ(x, y) denotes

the orientation of the flow vector.

Now the energy function with this notation can be written

as:

E(θ(x, y),m(x, y)) = (3)
∫ ∫

Ω

{ψ(I(x+m cos θ, y +m sin θ, t+ 1)− I(x, y, t))

+ αθψθ(ρθ(θ)) + αmψm(ρm(m)) } dx dy

where ψθ and ψm are robust penalty functions; ρθ and ρm
are differential operators, normally the gradients; αθ and αm

are regularization weighting parameters separately for θ and

m components. It is clear from this formulation that the two

flow components can be handled independently.

To avoid the problems due to the periodic nature of θ, we

can define new variables:

s(x, y) = sin θ(x, y) (4)

c(x, y) = cos θ(x, y)
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subject to s2 + c2 = 1 which is called coherence constraint.

With this modification, the energy function can be formulated

to minimize three parameters (c, s,m) as:

E(c, s,m) =

∫ ∫

Ω

{ λ(s2 + c2 − 1)2 (5)

+ψ(I(x+m cos θ, y +m sin θ, t+ 1)− I(x, y, t))

+ αθψθ(ρθ(c), ρθ(s)) + αmψm(ρm(m)) } dx dy

where λ is a Lagrange multiplier set to λ = e(s
2+c2−1)

2

updated before each iteration of the minimization process.

Eq. 5 is the final polar optical flow model and it is minimized

using Euler-Lagrange equations to obtain the optical flow,

more details can be found in [18]. One can notice that Eq.

5 contains two regularization terms for two polar coordinate

components, those can be weighted independently.

IV. SYNTHETIC DATASET GENERATION

The goal of this work is to study the adaptation of

regularization parameters in optical flow computation for the

varying speeds of the moving camera. The requirement is

to have several image sequences of the similar scene, but

with different speeds of the camera. It is not possible to

create the ground-truth optical flow for real sequences, unless

performed in a controlled environment. The other option is

to create synthetic image sequences with different camera

speeds and to generate ground-truth optical flow from the

3D models. There are few available synthetic sequences (e.g.,

[7] and [8] for general purposes, and [21] for ADAS). But

none of them suits our intended study. So, in this section the

process of obtaining the dataset with ground-truth optical

flow is detailed.

First, the 3D model is constructed using Maya1. The

constructed model is a typical urban scenario that consists of

a straight road with buildings on both sides with appropriate

textures. The model does not contain any nurb surfaces nor

any moving objects in the scene. The camera is assumed as

it is in a car moving in the scene along the straight road.

Different image sequences were generated by changing the

speed of the camera in the model. The image sequences

of different speeds having translation of 0.25cm, 0.5cm,

0.75cm, and 1cm per frame along the optical axis are

generated. From now on these sequences are referred to as

S1, S2, S3 and S4 in the increasing order of the speed. The

images in these sequences are of resolution 640×480 and are

rendered using Maya software. Next the ground-truth flow

fields are generated by raytracing using the code from [20].

Some images from all these different sequences are shown

in Fig. 2. The image in top − left is the common starting

frame in all sequences. top− right is the color-map used in

this paper to represent the flow fields. 2nd row− left is the

second frame in S1. 3rd row − left is the second frame in

S2 and so on. right− column shows the ground-truth flow

fields between the corresponding pairs of all sequences.

The ground-truth flow fields look diverging, the vectors

originated from a vanishing point at the center and directed

1www.autodesk.com/maya

Fig. 2. Images from sequences of different speeds: (top − left) first
frame common for all sequences; (top− right) colormap used to show the
flow field; (left− column) second frames from the sequences of different
speeds S1, S2, S3 and S4 in the order from top to bottom; (right−column)
the ground-truth flow fields between the respective second frames and first
frames.

outwards in all direction. One can observe that the black re-

gion in the bottom of the flow fields in Fig. 2 is increasing as

the speed of the camera increases; this indicates the increase

in displacements with increase in speed of sequences. The

ground-truth flow vectors are not generated at these black

pixels, as those pixels present in the first frame do not exist

in the second frame.

V. EXPERIMENTAL ANALYSIS

Our aim is to find some relationship between the tuning

of regularization terms in optical flow estimation and some

feature of the given sequence, in particular the speed is

considered as a representative feature. This relationship will
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allow an automatic update of regularization parameters ac-

cording to the current speed of the vehicle. Here we consider

the well known error measure Average Angular Error (AAE).

The polar representation based optical flow computation is

considered for analysis, which is the most suitable method

for ADAS scenarios. We make use of the code provided

by the authors of [18]. The polar optical flow method, as

presented in section III, contains two regularization terms

separately for two polar coordinate components: orientation

and magnitude. The corresponding weighting parameters are

αθ and αm. In this section, the two regularization terms are

independently weighted and the AAEs are analyzed. We tried

some values randomly and selected the values in the range 1,

2.5, 5, 10, 20, ...., 120 for both αθ and αm. Then, the optical

flow is estimated for all the combinations of these values of

αθ and αm, and the AAEs are computed. The optical flow

fields are estimated for several frames in each sequence and

the average of these AAEs in every sequence is used for

comparisons. All the sequences start from a common position

in the scene, so that the change in scene geometry should

not affect the quality of the flow and thereby conclusions

to be drawn. Figure 3 shows the 3D plot of AAEs obtained

for sequence S1, when varying αθ and αm values. Similar

AAE 3D plots can be obtained for all the sequences of

different speeds. But, due to space limitations and for better

comparabilities, 2D plots obtained by keeping one of the two

regularization weights constant are shown. Figure 4 shows

such plots of the errors (AAEs). There are six plots for few

selected fixed αθ values. Each plot contains four curves for

four sequences of speeds S1, S2, S3 and S4. These curves

indicate AAEs for different αm values and for a fixed αθ

value. Similarly, Fig. 5 shows the error plots of the same

four sequences for fixed αm values but for varying αθ.
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Fig. 3. 3D plot of AAEs from S1 for varying αθ and αm values.

From these plots it can be observed that for any com-

bination of αθ and αm, the sequence S1 has higher AAE

compared to sequences with higher speeds S2, S3, and S4.

The minimum AAE value and the corresponding regulariza-

tion weights for each of the sequences are given in Table I.

TABLE I

REGULARIZATION PARAMETER VALUES THOSE HAVE PRODUCED LEAST

AAES IN EACH OF THE SEQUENCES

Sequence αθ αm AAE

S1 5 40 2.7266

S2 5 50 2.4437

S3 5 80 1.9024

S4 5 80 1.6627

TABLE II

REGULARIZATION PARAMETER VALUES THOSE HAVE PRODUCED LEAST

AEPES IN EACH OF THE SEQUENCES

Sequence αθ αm AEPE

S1 10 20 0.0812

S2 10 30 0.1053

S3 10 60 0.1104

S4 10 50 0.1263

From this table one can re-affirm that the AAE decreases as

the speed of the sequence increases. It can be observed in

this table that the αθ value keep constant (i.e., αθ = 5 in

all the cases). One can infer that, the αθ value does not

need to vary much according to the speed. We can also

infer the same thing if we see the plots in Fig. 5. So αθ

needs to be fine tuned around this range and keep constant

independently of the speed. If we see the αm values in the

table we can conclude that αm should increase with the

speed, for a constant αθ. Looking at the plots in Fig. 4,

we can observe that the αm value needs to be tuned for a

fixed value of αθ.

We have also studied the properties of Average End Point

Error (AEPE) similar to AAE for all the sequences and

different values of αθ and αm. Table II shows the minimum

AEPE for each sequence and the corresponding αθ and αm

values. The same conclusion that we have drawn with respect

to AAE can be drawn here also. Unlike with AAE, here

the sequence with lowest speed S1 has got lesser AEPE

compared to other sequences with higher speeds and the

AEPE increases as the speed increases in the sequence. Since

vectors in the flow field of the lowest speed (S1) are smaller

in magnitude than in all the other cases, it is certain that the

AEPE of S1 will be smaller compared with other sequences

of higher speeds.

In order to check the effect of absence of either of the two

regularization terms, we made either of the two parameters

as zero. We found that making αθ as zero and αm as some

positive value gives erroneous but visually appealing result.

But if αm as zero and αθ as some positive value leads to

the problem illposed. The flow fields are shown in Fig. 6. In

conclusion, although polar representation seems to be the

most appropriated way to tackle the optical flow estima-

tion in ADAS domain, regularization terms are not equally

significant. Results are less sensitive to the regularization

term related with the orientation, while regularization term

related to the magnitude seems more important in making
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Fig. 4. Plots of AAEs, for few fixed αθ values and for varying αm values.

0 20 40 60 80 100 120
2

2.5

3

3.5

4

4.5

5

α
m

 = 1

α
θ

A
A

E

 

 

S1

S2

S3

S4

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

α
m

 = 10

α
θ

A
A

E

 

 

S1

S2

S3

S4

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

α
m

 = 30

α
θ

A
A

E

 

 

S1

S2

S3

S4

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

α
m

 = 60

α
θ

A
A

E

 

 

S1

S2

S3

S4

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

α
m

 = 90

α
θ

A
A

E

 

 

S1

S2

S3

S4

0 20 40 60 80 100 120
1.5

2

2.5

3

3.5

4

α
m

 = 120

α
θ

A
A

E

 

 

S1

S2

S3

S4

Fig. 5. Plots of AAEs, for few fixed αm values and for varying αθ values.
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the problem well-posed and a more accurate optical flow

estimation.

Fig. 6. (left) Flow field when αθ is zero. (right) Flow field when αm

is zero.

VI. CONCLUSIONS

The current work explores the state of the art in optical

flow estimation with the intention to assess their suitability

for ADAS applications. Statistically it is evident that a polar

representation of optical flow is better than the cartesian

representation and is the most suitable one in driving scenar-

ios. It is empirically concluded that the regularization term

related to magnitude is more important compared to regular-

ization term related to orientation. Further, it is evident that

weighting of the regularization related to magnitude needs to

be changed according to the speed of the vehicle, whereas

the weight of the regularization term related to orientation

can be kept at a constant smaller value. A new dataset for

this empirical analysis is developed and can be obtained by

contacting the authors. It consists of four image sequences of

different speeds along with their ground-truth optical flow.
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