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Abstract— This paper presents a brief survey of Visual SLAM
methods in the context of urban ground vehicles. For this, we
have reviewed relevant works, which present interesting ideas
applicable to future designs of VSLAM schemes for urban
scenarios. Our analysis aims to provide a global picture of state-
of-the-art VSLAM systems, using a simple taxonomy based on
an identified standard pipeline. This helps to show the global
and consistent structure behind the different aspects that form
these approaches. In addition, we also bring to the reader a set
of useful tools, such as freely available code and datasets, that
could help develop and test new VSLAM systems.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM), was
originally conceived as the problem of having an autonomous
robot that creates a consistent map of its environment and
localizes itself within this map [1]. It has been widely studied
by the robotics and the computer vision communities during
the last two decades, and as a consequence the original
definition has been extended and many special cases have
arisen. One of this cases is Visual SLAM (VSLAM), which
restricts the used sensors to be passive vision-based, i.e.,
cameras. The use of cameras allows the development of
accurate autonomous systems at the same time that decreases
costs and overall energy consumption.

When we take a look into the intelligent vehicles literature,
is easy to find many successful approaches that make use
of active sensors, such as LIDAR, to acquire the data.
Good examples of this are [2], [3] and [4], which de-
scribe practical approaches used in international competitions
(e.g., the DARPA Grand Challenge, and the European Land
Robot Trials), performing the first tests of these ideas in
real conditions. These sensors can simplify the underlying
estimation and mapping stages while producing remarkably
good results. Such simplification is achieved by shifting part
of the complexity from the SLAM stage to the acquisition
stage, i.e., acquiring dense clouds of 3D points with a laser
simplifies the remain stages.

However, developing SLAM approaches based on active
sensors might be an important drawback with a view to
their future introduction in driverless cars. This kind of
sensors are very expensive nowadays, reaching in some cases
a cost ten times higher than the vehicle. Even assuming
a drastic decrease of the cost of these sensors, they still
present a critical problem regarding their excessively high
energy consumption. These facts manifest the necessity of
considering lower-cost alternatives, as the ones provided by

cameras and VSLAM approaches. In this context, we must
highlight some notable works as the presented in [5], [6]
and [7], where different authors show that using VSLAM for
driverless cars — from now on VSLAM-DC — is a feasible
task.

After the analysis of these contributions along with many
others, we observe that VSLAM systems aiming to be useful
in driving assistance tasks typically share a general common
anatomy. In the remainder of this paper we discuss about
the design decisions and the characteristics of such anatomy,
aiming to define a set of standard building blocks.

II. VSLAM-DC, D ESIGN FROM NEEDS

Before describing the “anatomy” of VSLAM-DC systems,
we consider appropriate to start discussing about two critical
aspects that are sometimes forgotten; the assumptions made
regarding the environment, which can be seen as our input;
and the type of maps generated by the VSLAM method,
which is an important part of the output.

Accordingly, the first question to state should be; which
model of the environment might produce best results for
VSLAM-DC applications. Should we consider it metric,
topological, a hybrid combination of both, or something
completely different? This question is better addressed when
related to the main tasks needed to build intelligent vehicles,
which according to our bibliography analysis are:

• Global planning: goal selection, path calculation (short-
est path, safest path, etc.).

• Local motion planning: steering control, velocity con-
trol, lateral maneuverability, etc.

• Obstacle avoidance: terrain labeling, road detection,
object detection.

• Traffic laws enforcement: sign detection and recogni-
tion.

By considering these tasks, we are restringing the design
of these methods, as they must have the appropriate charac-
teristics to help performing them.

Starting our analysis from the first task, it turns out that
it requires the calculation of the current vehicle position
related to a set of known areas. However, if we try to
model our environment metrically, long trajectories will
produce notorious errors. This is, trying to generate long-
scale maps, over thousands of kilometers, while keeping drift
under acceptable values, is a hard task. A solution for this
problem could be the use of topological maps for global level
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purposes. In this way, places are represented as nodes in a
graph, and they can be recognized according to their visual
models. An application of this idea can be found in [8].

On the other hand, the later three tasks need to make
decisions regarding vehicle environment in a local neighbor-
hood. Thus, a topological representation of the world does
not cover the necessities of these tasks. Nevertheless, this
problem can be solved having a metric representation of the
vehicle surroundings. Accordingly, the most appropriate way
of representing the world seems to be a hybrid model that is
locally metric and globally topological. This appears to be
a trend in modern VSLAM-DC systems, as can be deduced
from [5], [6], [9], and others.

A second key aspect to consider is the type of output that
these systems should provide. As we have just justified, some
of the previous tasks need accurate local information to carry
out their mission. We defend the idea that such information
has to be encoded in a 3D dense map in order to provide fine
details to perform efficient maneuvering and avoid obstacles.
The literature shows some works dealing with this issue, as
in [10] and [11], where a near real-time algorithm for dense
maps creation is proposed.

Even though dense representations are a desired feature,
they come with the drawback of a high computational com-
plexity (i.e., to manage raw dense maps is a slow process).
In order to solve this problem, some authors have proposed
more compact representations that generate simpler maps
to reduce the overall computation. This is the case of the
Stixel representation [12]; a technique that approximates
vertical surfaces of a map with rectangular sticks in order
to distinguish between free space and objects.

Open challenges:One of the most important challenges
for creating real VSLAM-DC systems remains being the de-
velopment of topological approaches that allow for building
long-life visual maps. Those approaches should try to cover
the necessity of sharing maps between vehicles, and reusing
previously built maps in a long-term fashion.

III. A NATOMY OF VSLAM-DC METHODS

Fig. 1 presents a standard pipeline that shows the different
stages of a general VSLAM-DC approach, being these: (i)
visual cues acquisition, (ii) current parameters initialization,
(iii) information management, (iv) loop-closure detection,
and (v) optimization. Said in simple words, we use visual
information to initialize an estimation of the current vehicle
position and the environment map. Then, a subset of all
the available information is used to perform an optimization
process that produces a refined version of our parameters,
i.e., vehicle trajectory and map.

For the sake of simplicity, we consider convenient to
arrange the posterior bibliographic analysis according to
these stages, thereby helping to facilitate the understanding
of the fundamental concepts behind VSLAM. Accordingly,
a detailed description of all these stages is presented in the
following subsections, where we also provide a review of the
most relevant literature in the context of each stage.

However, before moving to the core of this paper, we
must warn the reader regarding the necessity of including
in our discussion techniques that have not been specifically
designed for ground vehicles, but they come from the com-
puter vision and robotics fields. This is principally due to the
high influence that such communities have on the intelligent
vehicles field, specially when talking about VSLAM. Many
of the ideas proposed for autonomous vehicles have their
origins in robotics or computer vision approaches. For this
reason, current techniques arising in other fields are very
important for the future of intelligent ground vehicles, and
therefore, they have been considered here.

A. Visual Cues Acquisition

This stage deals with the problem of acquiring visual
information (a.k.a. observations), needed in further stages,
as for instance: establishing relationships between vehicle
poses, creating the final map, etc.

The first aspect to be considered here is the number
of available views of the scene, namely: one (monocular
camera), two (stereo rig), orN (array of cameras). The
use of more than one camera has an impact on the later
processing time, although such an impact is not always
negative in terms of computation time. Sometimes, acquiring
information from more than one camera can help simplifying
algorithms, as more constraints can be established from the
extra information grabbed. An example of this can be seen
in [6], where authors take advantage of a stereo camera to
speed-up feature extraction.

VSLAM-DC literature is full of approaches that use
monocular cameras as main input [13], [14], and [15]. The
motivation behind this is simple, these cameras are cheap at
the same time that allow for reaching good results. On the
other hand, stereo cameras and arrays of cameras have been
typically considered as expensive, although nowadays their
cost is perfectly affordable. In addition, these cameras help
producing better results, since they allow for direct depth
measuring. For these reasons, to use multiple cameras seems
to be more appropriate for VSLAM systems in the context
of ground vehicle assistance. Proof of this are the successful
approaches that use this hardware, as in [6], [5], [7].

Other important aspect arises from the nature of the
observations. According to this, we can classify features
as corners, edges, blobs, or higher level structures (e.g.,
planes, curves, etc.). The amount of information encoded
on these features varies according to their complexity; i.e.,
planes encodes more information than corners, in exchange
for being computationally more expensive.

An analysis of current approaches shows that corners are
the most extended features. Corners are the raw material
of many successful techniques, such as [16], [17], [6], [5].
However, the specific type of corner detector (and descrip-
tor) varies between different approaches, being the most
commonly used Fast-BRIEF [18], Fast-SIFT [6], Fast-SURF
[19], and pure SIFT [20].

Edges-like features are not easy to find in the context
of urban VSLAM. Probably the most notorious work is
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Fig. 1. A standard VSLAM pipeline for driverless cars.

[21], in which authors use parallel lines to recover dominant
planes. The absence of more approaches that use edges or
lines is due to the extra computational cost associated to
their extraction. However, seminal works in the field of
indoor VSLAM, as the presented in [13], and [14], point
out the possible arrival of these approaches to VSLAM-DC.
A system that combines corners and planes as input features
has recently been presented in [22]. This work shows a novel
parametrization to unify both features while avoiding plane
fitting.

An important fact is that planes and other high-level
features are formed from more basic entities, like corners
or edges. This implies to perform a fitting process in order
to create the desired feature. For this reason, although high-
level features encode more information —being also more
robust—, they are commonly relegated, due to real-time
constraints.

Open challenges:There are some proofs in the literature
which show that VSLAM systems get better as the amount
of information, and its quality, increases [23]. Being able
of grabbing more cues and then associate them, results in
the creation of more constraints, which help refining the
internal state (map and trajectory). Although the benefits
of using features are given by quantity and quality, we
need to be aware of practical limitations. Firstly, the amount
of information we can process is bounded, due to compu-
tational constraints. Secondly, our capacity for associating
information in posterior steps is not perfect, and depends
on consensus methods [5]. Concerning both points, high-
level features are more repeatable and easier to associate.
Find a way to solve both problems while satisfying limited
computational resources, remains as an open issue.

B. Parameters Initialization

This process creates an initial approximation of the current
parameters (pose and map), where pose commonly stands for
vehicle location and orientation. A new pose is initialized
relative to a previous one. To do this, we use the constraints
arising from features that are common to the current and
previous frames. It is important to mention that pose initial-
ization is critical for the correct performance of the overall
system. Then, 3D landmarks take their values according to
the initialized pose, since this serves as their reference frame.
Thus, the initialization of 3D landmarks is conditioned to the
initialization of the current pose.

This general process can be approached in different ways,
being the most relevant based on the use of structure from

motion (SfM) and optical flow, as pointed out in [24].
SfM approaches track a set of sparse features throughout

several frames, and use them to estimate the camera pose
[24]. These kind of approaches are more consolidated, and
form part of many relevant works such as [25], [26], [17]
and [11]. A plethora of variations can be found in the
robotics literature, but all of them share the same basis,
which are: model generation based on statistical consensus
— RANSAC-like methods; and a posterior non-linear refine-
ment.

On the other side, optical flow, although intended for
image field estimation, can be also used for camera pose
initialization with some extra computations. At present, these
methods generate dense representations trough a global en-
ergy minimization process. A good example of optical flow
methods in the context of camera initialization is [19].

Nonetheless, the line that separates optical flow methods
from SfM methods is becoming fuzzy as new methods arise.
Comport et al. provide a good example of this, in [26], where
they present a stereo technique which behaves in an SfM
fashion, but uses dense information.

Open challenges:Substantial progresses have been done,
over the last decades, for the pose initialization problem.
We consider that SfM and optical flow methods have both
reached a high level of maturity in the robotics and computer
vision communities, and they are nowadays well understood.
However, there is still a necessity for finding out which is the
most suitable strategy for ground vehicle navigation. In this
sense, SfM applications are present on many real projects,
but optical flow methods can offer more accurate results.
This shows a common trade-off between computation time
and precision, although it might change in the near future.

C. Information Management

This stage is intended to present the most important issues
associated to the modeling of VSLAM-DC systems. Once
that we have acquired the visual cues, and also initialized
the current parameters, we must arrange all the information
in a consistent framework. There are different strategies for
doing this “arrangement”, but all of them draw on the concept
of SLAM as a graph of constraints, due to its consistency
and simplicity.

In the case of VSLAM-DC, poses and landmarks (atomic
units of a map) are represented as nodes; which are connected
according to observability relationships, i.e., the observability
of landmarks from a given pose. Normally, in this representa-
tion, vehicle poses and landmarks are treated as latent nodes;
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Fig. 2. Graph of constraints for a VSLAM problem.Pi refers to poseith;
Ti,j is the transform betweenPi andPj ; La is theath landmark; andMb

a

represents the measurement of landmarkLa from posePb.

and the concept of measurement is added as the prime source
of information. So, measurements — coming from images
— provide us with information to constrain and estimate the
hidden state of landmarks and poses, i.e., map and trajectory.
Fig. 2 shows an example of this kind of graphs.

Such general idea is commonly formulated from two
different perspectives, which are: the Bayesian networks
(BN), and the more general graphs of algebraic constraints
(please refer to [27] and [28] for more details).

The interesting thing is that, standard estimation tech-
niques can be defined according to the way in which they use
the information in the graph. For this survey we have iden-
tified three broad categories, which are: filtering techniques,
global estimation (GE), and sliding window filters (SWF).

Filtering Techniques: within this category the informa-
tion from past states is used to constraint current states. Once
that previous poses haven been estimatedP0:t−1, filtering
methods try to infer the parameters of current pose and
landmarks.P0:t−1 is just a node that encodes the information
of the poses chainP0, P1, . . . , Pt−1, but after a marginal-
ization process it becomes intoPm

t−1
. This implies that

normally, filtering methods only make use of the previous
pose and visual observations to predict new states. In addition
the marginalization process is usually approximated (e.g.,
linearisation), thus altering the information encoded inPm

t−1
.

As examples of this category, let us highlight modern
works like the one presented in [7], that makes use of filtering
along with a RANSAC-based outlier rejection scheme to
produce reliable urban localization and mapping. In the same
context, in [17] authors propose to combine filtering with the
outliers removal process, in a way that the former can guide
and ease the task of the latter to achieve fast performance
for outdoor navigation.

Global Estimation: This techniques are based on using
all the available information in the graph, to estimate the
full problem; i.e., the full trajectory and map, fromt0 to tn.
Accordingly, all the latent nodes of the graph are selected
to be adjusted; that is, all the constraints are considered to
produce the estimation, avoiding any kind of marginalization
or reduction.

This family of methods has shown to produce the best
results, although its computational complexity, cubic with
the number of landmarks and quadratic with the number of
poses, might be prohibitive for practical applications.

It is hard to find practical applications of pure global
estimation in the context of VSLAM-DC. However, in [29],

authors use global estimation in a two-level fashion for the
large scale SLAM problem. First they solve part of the
full problem with direct methods and then solve the rest
with Preconditioned Conjugate Gradient. In [30] a global
estimation strategy that use QR factorization is proposed to
update the sparse information matrix.

Sliding Window Filters: These methods present an in-
termediate solution between filtering and global estimation
techniques. One of their main characteristics is the selection
of a subset of graph nodes (the sliding window), which
usually are close to the current pose. Thus, only a part
of the available information is used, and therefore, the
computational complexity is reduced. Such a reduction favors
real-time performance, although this means sacrificing part
of the system accuracy.

In [18], authors, propose a SWF technique, which uses two
sliding windows with different types of information. Other
recent approach [5], uses a breadth-first-search heuristic,
which selects the set of nodes to be optimized, based on
the variation of their reprojection error.

An important subgroup that arises within SWF schemes
is pose-graph approaches. These methods marginalize out
landmarks, and attempt for estimating just vehicle poses,
producing a skeleton of poses. This strategy is used in [19],
where authors attempt to reduce the drift associated to scale,
rotation, and translation when revisiting places in large-scale
problems.

In a similar fashion, [31] shows an application of pose-
graph systems with a good performance recovering trajecto-
ries, even when the algorithm is provided with poor initial
poses. This is achieved by a stochastic gradient descent
method, which demonstrate its results in small areas.

Open challenges:It is important to note that, those tech-
niques using the full original information, without applying
a marginalization process, produce better results. However,
such trend comes with an elevated computational cost, that
makes real urban problems intractable. For these reasons,
sliding windows filters and pose-graph strategies have be-
come more suitable alternatives to solve these problems. It
is fair to say that methods here presented have reached a high
level of maturity over the last years. All the categories have
evolved, generating approaches that produce fast and reliable
results. Nevertheless, in order to integrate VSLAM in real
vehicle navigation systems, we still need to the efficiency
of previous methods. We consider that more research should
be done on exploiting information in sliding windows filters
and pose-graph systems. The main goal should be finding the
best way of using available information, at the same time that
performing in real-time.

D. Loop-closure Detection

Loop-closing is the action of associating previously seen
areas, or features, with the current ones. This association
produces a fusion of pose nodes and landmarks that were
considered as different entities until then. In this fashion,
we can recover from situations that were wrong, and refine
previous results.
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To perform loop-closure detection, first a new pose is
initialized and then added as a node of the graph. Landmarks
visible from this node are also added to the graph and
associated to such pose. After that, if our loop-closure
method detects a match between these landmarks and a set
of previously seen landmarks (associated to a pose node) it
can conclude that both nodes are representing the same pose,
and therefore, must be merged in one. If not, the added node
is kept in the graph along with its associated landmarks.

When two nodes have to be merged, the previous esti-
mations of some poses and features should be readjusted
(drift correction). If a large number of nodes were involved
in this process (e.g., think in a long circular chain made up
by pose nodes), most of them could require an adjustment.
This process can be computationally expensive in cases when
vehicles have traveled long paths, although we will show
some approaches that avoid this problem.

Before starting the review of the different approaches
tackling with this problem, we consider important to bring
back the concept of VSLAM-DC as a two level framework,
that was introduced in section II. Such an idea is specially
important here, since loop-closure methods can operate in
both local and global levels, although the formulation of
these methods is significantly different, as we show below.

At the local level, loop-closing methods have to detect
features based on geometric constraints, such as distances
between points; and also similar visual appearance in a low
level fashion. This idea is applied in [18], where authors use
the reprojection error of 3D points to find correspondences.
In [15] authors show a technique which makes use of both
relative distances, and visual appearance constraints. In a
similar fashion, authors of [9] use CenSuRe features as
part of their loop-closure approach for urban scenes. More
examples of these methods, together with a more detailed
description can be found in [32].

From the viewpoint of the so-called global level, loop-
closure strategies need to detect places, in a more abstract
way. This is the same as in metric loop-closure methods,
but the concept of place should be understood in a loose
fashion, as determining where a place begins, and where it
ends is a hard task. These definitions lend themselves to be
embedded in a topological representation, in where distance
information is neglected. Then, in order to be recognized,
each place has associated an appearance model.

One of the most successful approaches is presented in [8].
There, the problem is formulated as a Bayesian network, in
where each place is a node (here places are defined in a
temporal context, i.e., every several frames). This formula-
tion associates visual models, based on bag-of-words, to each
place, and then, when a new node arrives, they calculate
its posterior based on a maximum a posteriori strategy.
From this, the obtained results represent the probability, for
the new node, of being a previously observed place. This
approach, apart of being general, produces reliable loop-
closure detection over distances longer than 1,000 km.

Other authors propose topometric approaches, which cover
both local and global levels simultaneously. As an instance,

[33] shows a topometric system that makes use of covisibility
graphs and dynamic bag of words to close loops without
defining places explicitly.

Open challenges:We consider that loop-closure methods
working at local level are robust enough to accomplish their
mission. However, this is not true for global level methods,
which still need to find out the way of improving their
repeatability when the environmental conditions change. In
short, works like [8] might be improved, allowing them to
deal with drastic changes of illumination, occlusions, etc.;
since these situations are common in urban scenes.

E. Optimization

In subsection III-C, we showed different ways of manag-
ing the information that defines VSLAM problems. Here we
provide a complement that shows some of the most important
methods used to estimate the parameters of given models.

One of the most used techniques, in the context of filtering
schemes, is the so-called Extended Kalman Filter (EKF).
This method is an improved version of the classical Kalman
Filter (KF), which attempts to model non-linear systems by
means of a linearisation process.

Although, these kind of approaches were proposed in
SLAM more than two decades ago, modern approaches are
still using EKF. This is the case of [17], where authors
propose a robust VSLAM system based on EKF and an
improved version of RANSAC.

More general techniques, such as bundle adjustment (BA),
attempt for solving problems formulated within a global
estimation framework. Bundle adjustment is based on a
least-square optimization scheme, which exploits the sparsity
patterns arising in some problems to speed-up the process.
It has been widely used in the photogrammetry community,
producing solutions to complex systems involving thousands
or millions of variables. However, in real-time VSLAM
systems, BA is applied to solve sub-parts of the full problem,
as showed in [25]. Furthermore, the original bundle adjust-
ment has evolved, giving rise to new algorithms that follow
the pose-graph and SWF principles. This change makes
BA more suitable to real-time performance and VSLAM
applications for ground vehicles. Proof of it are successful
approaches, such as [5], [6], and [18]; which achieve real-
time performances while maintaining fairy precise results.

Open challenges:We note as a future goal, to keep
developing optimization methods, that are able to exploit
special properties of VSLAM systems for urban navigation.

IV. AVAILABLE RESOURCES INVSLAM

To know which software and data sets are currently
available for the VSLAM community is something very
important, as they simplify new developments and stablish a
common framework for comparisons. For these reasons, we
want to contribute by presenting a collection of resources
(software and data sets) that we consider relevant for the
problem of VSLAM-DC. However, adding those resources
as a part of this paper is not the best approach, since they
contain links that change and become outdated very quickly.
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To solve this problem we present a digital ver-
sion of these resources in the following web page:
www.cvc.uab.es/adas/projects/slam, that we
will keep updated. In addition, this allows members of
the scientific community to contribute to the creation and
management of these resources. As an example of such
contents we show some relevant data sets in Table I.

Resource V L IMU GPS GT

MIT Darpa Urban Challenge Dataset M Y Y Y Y

Ford Campus Vision and Lidar Dataset O Y Y Y Y

Karlsruhe Stereo Video Sequences S Y Y Y

.enpeda. Project datasets S Y

Victoria Park dataset O Y Y Y

The New College Vision and Laser Data Set S+O Y

The Cheddar Gorge data set S Y Y Y Y

The New college dataset (FabMap version) M Y Y

Stereo Versailles Round-about Sequence S

The Marulan Datasets M Y Y Y Y

TABLE I

DATA SETS FOR VISUAL URBAN SLAM, SHOWING RESOURCE NAME;

VISUAL SENSORS (V), I.E. MONOCULAR CAMERA (M), STEREO RIG (S),

OMNI CAMERA (O); LASERS (L); INERTIAL MEASUREMENT UNIT

(IMU); GPS; AND GROUND TRUTH DISPONIBILITY (GT)

V. CONCLUSIONS

Throughout this paper we have shown some of the most
important aspects of VSLAM-DC techniques. The use of an
execution pipeline as the unifying element, allows us to cre-
ate a clear global picture of the state-of-the-art approaches.

We consider that, in general, VSLAM-DC implementa-
tions are beginning to reach good levels of maturity, although
there are many aspects to improve in order to produce practi-
cal systems. As remarked at the “open challenge” paragraphs,
it is necessary to start working on new architectures that
combine topometric schemes, with rich 3D metric maps, and
novel ways of managing and optimizing the information.

Our forecast is that VSLAM community will remain very
active during the upcoming years.
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