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Fig. 1: Example of rigid pose estimation in 3D for a synthetic experiment based on real data [1]. The size of the scene is

217 m2. The experiment assumes a 20% of outliers and 200 correspondences. (a) scene at t0; (b) scene at t1; (c) alignment

obtained by the proposed approach; (d) representation of the error w.r.t the ground truth (cm).

Abstract—We present a novel technique for estimating initial
3D poses in the context of localization and Visual SLAM
problems. The presented approach can deal with noise, outliers
and a large amount of input data and still performs in real time
in a standard CPU. Our method produces solutions with an
accuracy comparable to those produced by RANSAC but can
be much faster when the percentage of outliers is high or for
large amounts of input data. On the current work we propose
to formulate the pose estimation as an optimization problem
on Lie groups, considering their manifold structure as well as
their associated Lie algebras. This allows us to perform a fast
and simple optimization at the same time that conserve all
the constraints imposed by the Lie group SE(3). Additionally,
we present several key design concepts related with the cost
function and its Jacobian; aspects that are critical for the good
performance of the algorithm.

I. INTRODUCTION

The pose estimation problem is present in many applica-

tions within the fields of computer vision and robotics.

This problem has received much attention during the last

decades [2], [3], [4]; being specially relevant the solutions

proposed for dealing with high levels of noise and outliers

[5]. Robust pose estimation plays a crucial role in Visual

Simultaneous Localization and Mapping (VSLAM) [6] and

Visual Odometry (VO) [7] problems, where relative poses

Tr ∈ SE(3) need to be accurately estimated in real time. To

do so, the most accepted practice consists of calculating an

initial estimation of each pose as soon as the sensor captures

a new frame. Then all these poses —so far considered as

an initial guess, are jointly optimized to ensure consistency

between them. These global (or partially global) optimizers

require initial guesses to be as accurate as possible but do

not have to be optimal. However, the time used to perform

such initializations is critical and needs to be kept low. For

these reasons, we present a novel technique to perform fast

and accurate pose estimation applied to the initialization of

VSLAM poses, a task that is carried out during the whole

process of localization.

In this paper we focus on the particular case of estimating

rigid transformations in 3D, Tr ∈ SE(3), between two

different instants of the same scene (see Fig. 1 for an

example). This is done by assuming that 3D information

is available, for instance coming from a stereo rig. Such

case commonly arises in VSLAM and VO problems, and

therefore, both of them can benefit from our contribution.

It is important to remark that our proposal is also valid for

other types of models and input data, but for simplicity we

only treat SE(3) in this paper.

Although pose estimation is addressed by a plethora of

methods in the literature, in practice the only approaches that

can successfully deal with high levels of noise and outliers

are the RANdom SAmple Consensus (RANSAC) and its

variations [5]. Most classical approaches based on least-

squares optimization and SVD decompositions, produce poor

results in the presence of outliers and other natural artefacts.

Furthermore, the process of estimating Tr must be fast

as well as robust. Unfortunately, RANSAC-like approaches

can be computationally prohibitive if conditions are not

favourable, as it happens when increasing the percentage of

outliers or the amount of input information. In these cases,

the method still might be able to produce a satisfactory

solution, but its execution time will be severely affected,
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preventing real time performance.

The reasons presented above motivate us to propose a

new approach for pose estimation that can deal with noise,

outliers and a large amount of input data while keeping real-

time performance in a standard CPU. Our method produces

solutions with an accuracy comparable to those produced

by RANSAC but it is much faster. To achieve this we have

addressed the estimation of the parameters as an optimization

problem on Lie groups, considering their manifold structure

as well as their associated Lie algebras. The optimization

is carried out on the linear space of the Lie algebra but we

move back to the manifold in order to perform the evaluation

of the solution candidates. Although similar approaches have

been tested before, we will show that our formulation differs

from those proposed in the literature.

Our contributions in this paper are twofold. First we

present a novel technique for pose initialization that makes

use of the formalism of Lie group spaces to achieve accurate

and fast solutions. We experimentally show that our method

can deal with noise, outliers and large amounts of input data

while performing in real-time. Our comparisons demonstrate

that in many cases the proposed approach can outperform

state-of-the-art techniques, such as RANSAC. Secondly, we

formalize key design concepts, which have a great impact on

the good performance of this algorithm, as for instance: the

algebraical reduction of the cost function, data normalization

and an efficient way of computing the Jacobian of a function

defined on the Lie algebra.

The remainder of this paper is structured as follows.

Section II introduces the key mathematical concepts used

in our proposal. In section III we formalize the problem

of rigid pose estimation in 3D and give an overview of

the representative approaches found in the literature. Section

IV describes the presented approach and highlights its most

important steps. The validation of these concepts is showed

in section V, where our technique is tested and compared to

other approaches. Finally we conclude this paper in section

VI, giving an advance of our future work.

II. PRELIMINARS

This section provides a brief introduction to Lie groups,

Lie algebras and some basic properties that will be used

along this paper. For further information about these concepts

we refer the reader to [8], [9] and [10]. We will start defining

a Lie group as a set G that satisfies all the conditions

of a group and is also a manifold (i.e., it is smooth and

has a differential structure). In this paper we only consider

manifolds of finite dimension d, embedded in R
d (with

k ≥ d). We can say that the manifold M looks like R
d

locally [11]. Then, given an open set U on the manifold,

such that U ⊂ M ⊂ R
k and another set Ω ⊂ R

d, there

is a homeomorphism (i.e., a continuous bijective map) that

transforms from one to the other, and therefore, they are

topologically equivalent.

It is important to know that Lie groups come with asso-

ciated Lie algebras. A Lie algebra A of a Lie group G is a

vector space that represents the tangent space TpG of the

group at a given point p. At the identity, this tangent space

provides a linearization of the Lie group, maintaining most

of its properties [8].

The link between a Lie group and its Lie algebra is called

the exponential map exp. This map and its inverse exp−1 =
log allow us to move between the vector space generated

by a Lie algebra and the group. It is important to remark

that, for Lie groups like SO(3) or SE(3), the exponential

map is surjective but not injective. In other words, all the

elements of these groups can be “reached” from the algebra

by the exponential map, but there are infinite elements in

the algebra that will be mapped to the same group element

(non-unique mapping) [8]. In the same way, log is a map just

defined for some regions and under certain circumstances.

The exp map can be generally defined for all matrix

groupsG ⊂ GL(n,R), whereGL(n,R) is the group of n×n
real invertible matrices. In this way, exp(A) is defined as:

exp(A) = In +
∑

k≥1

Ak

k!
=

∑

k≥0

Ak

k!
, (1)

where In is the n× n identity matrix. It is proven that this

series is absolutely convergent for any matrix [8]. However,

there are explicit ways of calculating exp for some specific

groups. This is the case of SE(3), the group of rigid

transformations in R
3. Here, the exponential map can be

computed as:

exp(S) = I4+S+
(1− cos(θ))S2

θ2
+
(θ − sin(θ))S3

θ3
. (2)

This expression is an adaptation of the well known Ro-

drigues’ formula [12]. Here, S ∈ se(3), which is the

Lie algebra corresponding to the tangent space of SE(3)

and is parametrized as S =

[

ω̂ v
~0 0

]

. Where ω =

(ωx, ωy, ωz) is a 3-vector representing a 3D rotation and

ω̂ =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 is its representation in so(3), as a

3×3 real skew-symmetric matrix; v ∈ R
3 is a column vector

that represents the translation and θ = ‖ω‖ℓ2 , i.e., the amount

of rotation in the direction defined by ω
θ
. It is also important

to note that se(3) is isomorphic with R
6, which means that

there exists a map that transforms between both spaces. We

will take advantage of this property by representing elements

of se(3) as the 6-vector (ω, v).
Our approach strongly depends on (2), and the isomor-

phism between se(3) and R
6. These properties allow us

to enforce all the constraints of SE(3) while keeping the

optimization procedure simple on the vector space se(3) ≈
R

6.

III. PROBLEM DEFINITION AND RELATED WORK

As presented in the introduction, the interest of this paper

is the estimation of rigid transformations between views as

a framework for parameter initialization in VSLAM and VO

applications. For this reason we are focused on the space
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of rigid transformations in 3D, SE(3) —intimately related

to the previous applications. Nevertheless, our technique can

also be applied to other transformation groups as long as

they maintain the Lie group structure (e.g., SO(3), Sim(3),
Aff(3) and others.). In fact, it is also possible to use

our technique on more general transformations if they have

a connected-manifold structure and are endowed with an

exponential map.

We address the pose estimation problem by assuming

that there is a set of correspondences X = {(Xi,X
′
i)}

coming from two different instants of time of the same scene.

From now on Xi should be understood as the i-th 3D point

represented by a homogeneous vector, and X will be a N×4
matrix containing N points in homogeneous coordinates as

row vectors. How to calculate these correspondences is out

of the scope of this paper; we will suppose that they were

obtained from a stereo rig. Several ways of performing this

process can be consulted in [13] and [7]. Hence, given

a set of correspondences, the problem of registering two

rigid scenes in 3D is classically formulated as finding the

transformation Tr that best fit the data. This is expressed as

a least-squares problem:

Tr∗ = (R, T )∗ = argmin
Tr∈SE(3)

N
∑

i=1

‖h(Tr,Xi)−X′
i‖ℓ2 (3)

where N is the number of correspondences and h defines a

valid way of transforming the points.

The correct estimation of Tr requires to consider all

the constraints imposed by the group SE(3). However,

traditional methods, such as the proposed in [2], [3] and

[14] proceed in a different way. First, they remove the mean

fromX and X′ and reduce the problem to estimate a rotation

matrix R. Accordingly, the computation of T is subordinated

to the estimation of R, what will lead to incorrect solutions

in the presence of noise and errors in the data association.

Moreover, the computation of R is first approximated by

a transformation R0 6∈ SO(3) obtained by least squares.

Then, these approaches try to find the closest element to R0

in SO(3). This is clearly inappropriate in presence of noise

since it will produce inaccurate estimations for T .

Other techniques enforce the fulfilment of all the con-

straints by making use of Lagrange multipliers [15], some-

thing that leads to a harder optimization problem and requires

extra computation. An additional drawback comes from the

over-parametrization of R as an orthogonal matrix R
3×3.

This produces a negative impact on the optimization proce-

dure, having to be replaced by a minimal parametrization.

Fortunately, all these drawbacks can be solved by consid-

ering the Lie group structure of SE(3) and its associated Lie

algebra se(3). The relationship between both spaces allows

us to perform the optimization on the vector space se(3)
and move back to the group when necessary (please, refer

to section II for more information).

This aspect has been previously exploited in different

works. In [4] and [16] authors apply these concepts on the

field of computer graphics. They carry out an optimization

process for the estimation of rotations, although they do

not consider computational time as a critical aspect. In a

different way, [17] shows the application of these ideas to

the estimation of the essential matrix E . Although E does

not have structure of Lie group, the same principles apply

due to its global structure of Riemannian manifold with an

exp map.

More recently, novel approaches have focused on the re-

formulation of this problem as an averaging problem on a

manifold. This idea consists of using an initial set of noisy

transformations {T 1
r , T 2

r , . . . , T m
r } and average them all in

order to (hopefully) produce a better transformation T ∗
r that

is not affected by noise. There, Lie groups and Lie algebras

are utilized to guarantee that all the constraints are met. This

concept is is tested in [12] for estimating transformations in

SO(3) and SE(3). After this work, [18] proposes a more

robust approach based on the use of the ℓ1-norm, which

improves the tolerance of these techniques to noise. However,

averaging techniques present a clear drawback since they

require multiple initial poses to be already available.

Our proposal should be included in the category of opti-

mization on manifolds, such as [4], [16] and [17]. However,

our approach differs from these others in some important

aspects. Firstly, here we address the problem of estimating

transformations on SE(3), while they deal with SO(3) or

E . More important, they define update steps along geodesics,

curves of minimal length on the manifold. Accordingly, they

try to compute gradient directions and step length by using

the properties of geodesics. Such a philosophy, although

correct, requires to adapt the internal structure of current

optimizers to accommodate these changes. In contrast to this,

our approach does not require to modify any optimizer, as it

is based on a simpler concept. We use the exponential map

to transfer solution candidates from se(3) to SE(3) and then

perform their evaluation on the group. After this, the update

step is performed on the algebra by following the direction of

the gradient, which is calculated as a function on the group

in terms of the algebra parameters. Such a difference allows

us to solve the problem by applying a standard optimizer,

while keeping our solutions on the manifold.

IV. OPTIMIZATION ON LIE ALGEBRAS AND LIE GROUPS

In order to overcome the aforementioned limitations we

address the pose estimation problem by optimizing a cost

function that evaluates candidates in the constrained space

of SE(3), but “moves” across the vector space of se(3).
To convert this idea into a practical solution, capable of

producing reliable results and running in a short lapse

of time, requires a careful design of all its steps. In the

following, we describe the structure of our approach step

by step, starting by the design of the cost function itself. A

summary of the technique is shown in Algorithm. IV.1, at

the end of this section.

A. Cost function

We have transformed the optimization problem defined in

(3) into an equivalent problem on se(3) ↔ SE(3) spaces.
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This is formalized in (4), below:

(ω, v)∗ = argmin
(ω,v)∈se(3)

C(ω, v), (4)

where C is a cost function with domain on the Lie algebra:

C : se(3) → R. The solution candidates have to minimize

the distance between points sets X and X′, which implies

to convert the candidate to its group representation (R, T )
as an homogeneous matrix. This is done by introducing the

exp map in the cost function, giving rise to:

C(ω, v) =
N
∑

i=1

d(exp(ω, v)Xi,X
′
i). (5)

Here, d(·, ·) is a suitable distance function between two

homogeneous points X′
i and X′′

i = exp(ω, v)Xi.

The selection of the function d(·, ·) drastically affects the

accuracy of solutions and the performance of the entire

method. d(·, ·) has to minimize the impact that noisy data

introduce into the system. This is specially important when

the 3D points are obtained from a triangulation process,

where errors will increase quadratically with respect to the

distance of points to the camera centre [19]. Furthermore, the

process of associating points along different views introduces

wrong correspondences (outliers), that deviate the function

from the actual solution.

In the context of optimization this task is usually carried

out by the so called robustified functions. These are functions

that try to reduce the influence of those correspondences

that produce too large residuals ǫi = d ((R, T )Xi,X
′
i). The

Huber function [20] and the ℓ1-norm [18] are some instances

of this paradigm. In contrast, functions based on the ℓ2-norm

square each of the residuals, what can amplify the influence

of the noise.

Accordingly, it would be desirable to make use of a

robustified function for our problem. However, it is important

to remark that these functions have to perform an individual

treatment of each residual in order to weight it appropriately.

Therefore, the computational cost of evaluating a candidate

solution will be proportional to the amount of input data. This

behaviour compromises efficiency in favour of robustness

and prevents of using large amounts of data.

This reason led us to choose d(·, ·) = ‖·‖2ℓ2 as it can offer a
good trade-off between robustness and speed. Although this

function is not as robust to the presence of noise as the Huber

function, it behaves well in practical situations if the data is

appropriately treated. But the main reason is that this cost

function leads itself to suitable algebraical reductions, which

makes possible to evaluate candidate solutions independently

of the amount of input data.

B. Data normalization

Before performing the algebraical reduction, it is appropri-

ate to normalize the input data. An appropriate normalization

is mandatory in optimization processes [19] [21]. This does

not only prevent from converging to deliberately wrong

solutions, but also reduces the number of iterations needed

by the optimizer. In our case, we use the normalization

procedure proposed in [21]; it consists of centering point

distributions around zero and make their variance σ2 =
√
3.

This is done for both sets of points X and X′ independently
by computing the following transformation:

W =

[

N
√
3∑

N
i=1 ‖Xi‖ℓ2

I3
−
√
3∑

N
i=1 ‖Xi‖ℓ2

∑N

i=1 Xi

~0 1

]

. (6)

Two matrices W and W ′ are calculated from X and X′

respectively. Then, the correspondences are normalized to

produce X̃i = W Xi and X̃′
i = W ′ X′

i (here ·̃ stands for

normalized points). In our experiments, the normalization

of the data made the algorithm convergence more than ten

times faster. As a final consideration, once the optimizer

finds a solution (R̃, T̃ )∗ in normalized coordinates, the actual

solution is recovered as:

(R, T )∗ =W ′−1(R̃, T̃ )∗W (7)

C. Reduced Measurement Matrix

After the normalization step, we can take advantage of the

properties of C to derive an algebraically equivalent expres-

sion that reduces the evaluation of all the correspondences to

a single matrix: the Reduced Measurement Matrix, M . This

concept was introduced by Hartley in [21], although it had

been applied in previous works without an explicit mention

[2] [3]. Here we have derived a modified version of M that

fits in our problem. We base its construction on Lemma 1,

below.

Lemma 1. Given a matrix V that contains N d-vectors v(i)

as rows; V =





v
(1)
1 ··· v

(1)
d

...
. . .

...
v
(N)
1 ··· v

(N)
d



, then it follows that:

N
∑

i=1

‖v(i)‖2ℓ2 = ‖V‖2F = tr(VTV). (8)

Here tr stands for the matrix trace and the lemma can be

easily proved by expanding both sides of the equality.

Accordingly, we can transform our cost function C into a

more compact expression as the derived in (9).

C(ω, v) =
N
∑

i=1

‖exp(ω, v)X̃i − X̃′
i‖2ℓ2 =

N
∑

i=1

‖TrX̃i − X̃′
i‖2ℓ2

=

N
∑

i=1

∥

∥

∥

[

Tr −I4
]

[

X̃i

X̃′
i

]

∥

∥

∥

2

ℓ2

(Lemma 1)
= (9)

tr

(

[

Tr −I4
]

[

X̃

X̃′

]

[

X̃T X̃′T
]

[

T T
r

−I4

])

=

tr
(

[

Tr −I4
]

M
[

Tr −I4
]T

)

= CM (ω, v).

In this way, we only have to compute M once, before

starting the optimization procedure. Then, the optimization

will be carried out on CM. This variation drastically reduces

the time required to perform each iteration, and therefore,

the total execution time of the approach. Hence, a larger

amount of correspondences can be managed while still
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running in real-time. Such a capability is not achievable by

RANSAC and its variations, as each of those hypotheses

must be checked against the entire set (or a subset) of

correspondences to estimate its number of supporters.

D. Optimization stage

It is important to remark some relevant properties before

describing the optimization procedure. As stated before, the

optimization of CM is carried out in se(3), a vector space

isomorphic with R
6. This function is convex with respect to

the parameters of the Lie group (its Hessian matrix is semi-

definite positive). However, it is non-convex with respect

to se(3), what is derived from the fact that any element in

SE(3) is represented by infinite elements from se(3) [8][9].
In practice this is not a problem since all the elements

of SE(3) can be unambiguously reached when considering

a bounded region of its tangent space TISE(3) (centered

on the identity). As all the elements of SE(3) are uniquely

mapped to elements of that region, there will be a unique

minimum reachable from there. Additionally, any initial

point within that region will converge to the optimum. Thus,

there is no need to constrain the optimization procedure.

Considering the previous facts, the optimization process

is carried out by a first-order method based on a standard

non-linear conjugate gradient (NLCG) [22]. The main reason

for this is to avoid the explicit calculation of the Hessian

matrix performed by second-order techniques. NLCG with

the normalized data is enough to reach the optimum very

quickly. In fact, in our experiments the optimizer took on

average twelve iterations.

E. Calculation of the Jacobian matrix

One of the key elements of our proposal is the fast compu-

tation of the Jacobian matrix for se(3). Some approaches, as

for instance [4] and [17], apply gradient descent methods by

computing directional derivatives on the geodesics defined

by the exp map. In contrast to this, we opted for calculating

the Jacobian matrix on R
6, as it forms an isomorphism with

se(3). This variation allows to use standard optimization

frameworks, but can lead to an inefficient expression if not

done properly.

This is the case of the analytical expression of the Jacobian

for the proposed cost function CM; it is very complex, since

we need to account for all the terms introduced by exp.

This complexity makes the use of the analytical Jacobian

prohibitive in a real-time framework. On the other hand,

numerical approximations are more efficient alternatives and,

in practice, they can lead to the same accuracy.

According to that, we calculate a fast approximation of

the Jacobian matrix based on the partial derivatives of the

Taylor series of exp. The idea works as follows. Given the

cost function CM we have that:

CM(ω, v) = tr
(

[

Tr −I4
]

M
[

Tr −I4
]T

)

= (10)

tr
(

[

exp(ω, v) −I4
]

M
[

exp(ω, v) −I4
]T

)

.

From where it follows that:

∂CM
∂(ω, v)m,n

=
∂tr

(

[

exp(ω, v) −I4
]

M
[

exp(ω, v) −I4
]T

)

∂(ω, v)m,n

=
∂
[

exp(ω, v) −I4
]

i,j

∂(ω, v)m,n

Mj,k

[

exp(ω, v) −I4
]T

k,i

+
[

exp(ω, v) −I4
]

i,j
Mj,k

∂
[

exp(ω, v) −I4
]T

i,j

∂(ω, v)m,n

=
[

∂exp(ω,v)
∂(ω,v)m,n

0
]

i,j
Mj,k

[

exp(ω, v) −I4
]T

k,i
(11)

+
[

exp(ω, v) −I4
]

i,j
Mj,k

[

∂exp(ω,v)
∂(ω,v)m,n

0
]T

k,i

=
[

exp(ω, v) −I4
]

i,j

(

M
T
j,k +Mj,k

)

[

∂exp(ω,v)
∂(ω,v)m,n

0
]T

k,i

= tr
([

∂exp(ω,v)
∂(ω,v)m,n

0
]

(

M +M
T
) [

exp(ω, v) −I4
]T

)

.

Note that the derivative has been calculated by using abstract

indices and due to this the trace is represented as a contrac-

tion of the form Ai,j · · ·Bk,i. When the final expression is

obtained the trace appears back. Furthermore, this expression

shows that the Jacobian of CM can be easily calculated from

the partial derivatives of exp and a matrix that results from
(

M +M
T
) [

exp(ω, v) −I4
]T

. The partial derivatives of

exp have been approximated from the Taylor’s series for

exp, such that:

∂exp(S)

∂(ω, v)
=

∂
(

∑

k≥0
Sk

k!

)

∂(ω, v)
=

∑

k≥1

1

k!

(

∂S

∂(ω, v)
Sk−1 + S

∂Sk−1

∂(ω, v)

)

, (12)

where S is an element of se(3) in its matrix form (see

section II). One of the advantages of this expression is that

the k-th term of the series can be quickly computed from

the (k − 1)-th term, giving an efficient way of computing

the Jacobian of exp. Furthermore, the convergence of this

approximation is very fast. When twenty terms are used,

the difference between this approximation and the actual

Jacobian remains below 10−11.

F. Refinement with the supporters set

This final step is borrowed from RANSAC [5] and consists

on refining a given solution (R̃, T̃ )
∗
from its set of supporters

XS = {(Xi,X
′
i)} ⊂ X . In our approach this is done by

defining a threshold τ < 0.3 and then selecting all the

correspondences that meet ‖(R̃, T̃ )
∗
X̃i−X̃′

i‖ℓ2 < τ . Next, a

refined model (R̃, T̃ )
∗
S is computed from XS by using a fast

least-squares method based on singular value decomposition,

as showed in [3].

The step here presented is optional, although it produces

an important improvement of the solution. From a practical

point of view, our recommendation is to apply it when the
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amount of input data is not too large (around 500 points);

otherwise this would affect the global speed of the method.

Algorithm IV.1: se(3)↔ SE(3) OPTIMIZATION()

1. Compute W and W ′ from X and X′, as in (6)

2. Generate ∀i X̃i ←WXi, X̃
′
i ←W ′X′

i

3. Form M from X̃ and X̃′ by applying (9)

4. Assign a random value to x ∈ R
6, such that ‖x‖ < π

5. Apply gradient descent to optimize the cost function

in (10), given the Jacobian matrix of (11) and (12),

until the algorithm converges to the solution x∗

6. Use exp to convert x∗ into (R̃, T̃ )
∗

7. Estimate (R̃, T̃ )
∗
S from the inliers of (R̃, T̃ )

∗
as in sec. IV.F

8. Denormalize (R̃, T̃ )
∗
S as in (7) to produce (R, T )∗S

V. EXPERIMENTAL RESULTS

This section presents a comparison of our proposal and

two well known representatives of the estimation methods:

RANSAC and Horn’s algorithm. RANSAC is still one of

the most popular techniques to perform robust estimation,

even after the large amount of variations found in the

literature. On the other hand, we selected Horn’s algorithm to

represent classical least-squares techniques and to show that

our approach produces more accurate results in comparison

to such methods. All these techniques are coded and tested

in MATLAB. The RANSAC implementation used in tests

is part of the RANSAC Toolbox for MATLAB [23]. This

is something to bare in mind, as the C counterpart of these

methods will run much faster.

The experiments were carried out on synthetic cases, but

using realistic configurations and conditions. The factors

analysed here are accuracy, robustness against noise and

outliers and finally computational performance. All the tests

were carried out several times in order to produce average

results. Our experimentation setup is common for all the

experiments and works as follows. Each experiment is car-

ried out by first creating two clouds of points X and X′

with N correspondences perfectly matched. We distinguish

here between two cases; the first case, in which the clouds

are generated from random synthetic points within a given

3D volume (around 100 metres large); and the second case,

which is based on real 3D scenarios obtained from the urban

dataset in [1]. Fig. 1 is an example of the second class.

Then, regardless the origin of the data, we add a certain

amount of noise ∆ to each point independently. ∆ simulates

the actual noise caused by sensors during the acquisition

process and by the 3D triangulation method. This is done

by defining the parameters of a virtual stereo rig, which in

our experiments consisted of: focal length of both cameras,

f = 350 px; baseline of the device, B = 0.35 m; calibration

error, ce = 0.06 px. From these parameters we defined the

noise of a point as being ∆Xi = [Xi(z)ce
f

,
Xi(z)ce

f
,
Xi(z)

2ce
fB

].

Additionally, we further affect the correspondences set X =
{(Xi,X

′
i)} by substituting a percentage Po of the associ-

ations with incorrect matchings. This failure matchings are

controlled to avoid producing associations between points

that are too far away in the scene. In our experiments this

maximum distance is 10 metres.

Following this configuration, we tested the robustness of

the methods against an increasing percentage of outliers in

X . This was done by generating different sets of N = 160
correspondences (all of them affected by an amount of

noise ∆) and containing an increasing percentage of outliers

Po ∈ [0, 50]%. Then, the error of each estimation (R, T ) is
measured against the ground truth (R, T )∗G as the Euclidean

distance between matrices E = ‖(R, T )− (R, T )∗G‖ℓ2 . The
results of this first experiment are showed by Fig. 2(a).

These results show that the average error of RANSAC

stays below 0.09 units, even when the 50% of the data

contains outliers. In contrast, Horn’s algorithm solutions have

errors that go far beyond 10 units, which in practice means

an unusable model. Our technique produces estimations with

average error of 0.4 units, which is still comparable to

those produced by RANSAC. Note that, although Horn’s

method and our approach are both based on a ℓ2-norm, the

optimization of this norm assuming an underlying manifold

structure produces much better results.

Fig. 2(b) shows the results for the same experiment, but

this time from the viewpoint of the execution time. Notice

that the vertical axis is shown in logarithmic scale. This

is done to permit a correct visualization of results for the

three methods. As shown, our method clearly outperforms

RANSAC in this aspect. The average time of our method

is 35 ms and remains stable even when the percentage

of outliers increases. In contrast, RANSAC timings get

drastically affected by such increase, even exceeding 200

seconds of computation. There are two explanation for this

phenomenon. Firstly, due to the noise, RANSAC cannot

estimate a proper bound of the inliers set, what makes it

to compute far more hypotheses than the established by

theoretical limits. The second reason has to do with the bad

performance that large loops present in MATLAB. In any

case, even with a faster version of RANSAC, our method

tests less hypotheses and can evaluate each one much faster

than RANSAC. In turn, Horn’s algorithm produce the best

times due to its non-iterative nature (less than 5 ms).

Our second experiment tests the influence that the amount

of data has in the estimation process. For this case we fixed

Po = 25%, value that we consider in concordance with

the values found in real scenes. As presented in Fig. 3(a),

the inclusion of more data has a positive influence on the

accuracy of the results, even when the data is proportionally

affected by noise and outliers. This phenomenon is due to

the law of large numbers and was previously pointed out in

[24]. In this case, when 1000 correspondences are used, the

error of our method decreases from 0.4 units to 0.2 units,

while RANSAC moves from 0.09 units to 0.06 units. Horn’s

algorithm also improves, but its error is still too large.

On the other hand, Fig. 3(b) shows execution times asso-
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Fig. 2: Evaluation of the impact of different percentages of outliers in the methods performance (N = 160). (a) average
error ‖(R, T )− (R, T )∗G‖ℓ2; (b) computational time results given in a logarithm scale.

Fig. 3: Evaluation of the impact of the amount of input data in the methods performance (Po = 25%). (a) average error

‖(R, T )− (R, T )∗G‖ℓ2 ; (b) computational time results given in a logarithm scale.

Fig. 4: Evaluation of the methods accuracy when restricted to perform in less than 20 ms (N = 200).

ciated with this experiment. Here we see that the proposed

technique suffers much less than RANSAC when the input

data is increased. We obtain a running time of 60 ms for

the extreme case of 1000 correspondences. This is achieved

by the use of the Reduced Measurement Matrix, that makes

the optimization procedure independent of the data size.

However, there are three steps of our method that are directly

affected by the rise of the input data: the normalization

process, the formation of M and the final refinement with

the supporters set. The two former steps are computationally

very efficient and can work well with large amounts of data.

However, the refinement should be deactivated for such situ-

ations (whenN > 800), in order to keep a low computational

time. As shown in this plot, the computational time of our

technique tends to the one of Horn’s algorithm, although

our accuracy is much better. Furthermore, RANSAC times

increase linearly with the amount of data, reaching 160
seconds when tested with 1000 correspondences; i.e, more
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than 2000 times slower than our approach.

Following with previous results, we decided to evaluate

the accuracy and the robustness of these methods by testing

the best solution they can produce in a given time. To do

this, we fixed a maximum time of 20 ms and set the number

of correspondences N = 200. The results of this experiment

are shown in Fig. 4. Under these circumstances our approach

produces better results than RANSAC and Horn’s algorithm

in the majority of the cases. Moreover, if the maximum

time is further reduced or the number of correspondences

is further increased, RANSAC performance decays.

These results, although drawn from synthetic experiments,

are very encouraging. They show that proposal can deal with

noise and outliers fairly well. Our MATLAB implementation

runs in 20 ms for standard cases, and deal with a thousand

correspondences in just 60 ms. We hope that a future C im-

plementation will be able to run in a couple of milliseconds

for standard conditions. Furthermore, the accuracy of our

results are similar to those of RANSAC, even outperforming

it in some situations. However, this critical aspect still has

to be evaluated on real data. We believe that these results

might be further improved by managing a larger amount of

data. As shown, significant increments of the input data are

well managed by our method, and may be used as a new

alternative to achieve better estimations.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel technique for performing pose

estimation between two views in the case of rigid transfor-

mations in 3D. We based our approach on the formalism of

Lie-groups and Lie-algebras in order to deal with the non-

linear constraints of SE(3) during the optimization process.

This was done by following the principle “optimize on the

linear space of the Lie-algebra and then move to the manifold

space of the Lie-group”. As showed, a pipeline based on

these ideas can produce accurate results without sacrifying

real-time performance. A fast implementation of the Jacobian

matrix as well as the utilization of the RMM to compress the

input data play a critical role in achieving this performance.

Experimental evaluation on synthetic cases showed that

the accuracy of our approach is comparable to that of

RANSAC (and much better than that of the Horn method),

while our execution time is much lower. In cases where the

percentage of outliers increases or the amount of input data

is too large, our method can still produce good results in

real-time. When both approaches are constrained to produce

a solution in less than 20 ms, our method produced the most

accurate results.

We consider interesting to keep investigating the capability

of this approach for managing large amounts of data. This

might open a door for increasing the accuracy of the results

by providing more input data —which is nowadays available

due to high-resolution cameras and dense stereo techniques.

We will also evaluate the behaviour of this approach on real

imagery and its application to a final VSLAM system.
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