Proceedings of the 2004 IEEE
International Conference on Robotics & Automation
New Orleans, LA « April 2004

Hierarchical Clustering of 3D Objects and its
Application to Minimum Distance Computation

Angel Domingo Sappa

Computer Vision Center
Universitat Autonoma de Barcelona
Campus UAB 08193, Bellaterra, Barcelona, Spain

angel.sappa@cvc.uab.es

Abstract - This paper presents a new iterative algorithm for
automatically generating a hierarchical clustering of the objects
contained in a complex 3D scene. The proposed object-oriented
representation is shown to be advantageous over octrees, a tradi-
tional scene-oriented hierarchical representation, for
accelerating extensively-used tasks such as minimum distance
computation. Experimental results with large synthetic 3D
scenes are presented.

Index Terms - Hierarchical clustering. World modeling.

I. INTRODUCTION

Hierarchical representations have played an important role
in many different research areas. This kind of strategy (i.e.,
decompose a complex problem into a hierarchical set of sim-
pler representations) can be found in fields as diverse as
motion planning (e.g., [1][2]), task organization [3] or image
processing [4], to mention a few. Similarly, 3D hierarchical
structures have been proposed as an efficient and compact
representation to tackle problems involving some form of
spatial reasoning, such as collision detection, visibility analy-
sis or path planning.

Due to the interest of the problem, several techniques have
been proposed in the 3D modeling literature to automatically
generate compact hierarchical structures. These approaches
can be broadly classified into scene-oriented or object-ori-
ented. Although they both pursue the generation of a
hierarchical representation, their underlying philosophy is
significantly different as it is described below.

Scene-oriented schemes consider a given scene as a whole,
progressively subdividing its volume at every level of the
hierarchy. Some well-known approaches that fall within this
category are: Binary Space Partitioning trees [S], Octrees [6]
and Extended Octrees [7].

However, since the objects contained in the scene are con-
sidered as a part of it and not treated as single entities, many
basic tasks that require the processing of individual objects
(e.g., minimum distance computation) may suffer from a sig-
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nificant downfall in performance, as it will be shown later in
this paper.

In turn, object-oriented schemes focus on the individual
objects contained in the scene rather than on the scene as a
whole. Two basic approaches can be distinguished. The first
approach, which will be referred to as intra-object represen-
tations, consists of decomposing each single object into a
hierarchy of basic geometric primitives (e.g., CSG). Most of
the object-oriented schemes proposed in the literature belong
to this category. Alternatively, the second approach does not
pretend to decompose objects into simpler parts, but to group
them appropriately. The hierarchies generated in this way will
be referred to as inter-object representations. The proposed
technique falls into this second category.

Hierarchical inter-object representations have been suc-
cessfully utilized, for example, for solving complex tasks in
robotics under both kinematic and dynamic constraints (e.g.,
[2]1[8]), although these works do not pay attention to the way
in which the representations are generated.

To our knowledge, the first inter-object representation
scheme was proposed in [9]. It is based on a bottom-up strat-
egy that starts with the bounding volumes of the objects
contained in a 3D scene and progressively groups them into a
binary tree by applying heuristic rules that favor the progres-
sive growth of those volumes.

The main disadvantage of that technique is its dependence
on a large number of user-tuned parameters. Moreover, the
heuristic rules that determine when two objects are grouped
are based on a cost function that does not have a proper phys-
ical interpretation as it will be shown in Section 2. This can
lead to non-intuitive groupings. Finally, all cost functions are
recalculated whenever every pair of objects is clustered and
that can be very inefficient for large scenes.

In a different approach presented in [10], a minimum span-
ning tree (MST) is first extracted from a fully-connected
graph that keeps the cost of grouping every pair of objects of
the scene. The cost function is based on Newton’s law of uni-
versal attraction. From the MST, an n-ary tree is finally
generated. This approach is very efficient as the cost between
the objects of the scene is only computed once. Furthermore,
it has no parameters that have to be carefully tuned. However,
the lack of a cost update as the grouping proceeds becomes a
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disadvantage when large, complex scenes are considered.

A new approach to the problem of inter-object grouping is
presented in this paper. Similarly to [10] and [9], the algo-
rithm starts with the bounding spheres of the scene objects
and clusters them into a tree. However, the proposed tech-
nique defines a more realistic cost function and automatically
updates the merging cost at every iteration, leading thus to
more “intuitive” clusterings.

The proposed algorithm is described in Section 2. Section
3 presents experimental results of its application to synthetic
scenes of increasing complexity and a comparison with
octrees in terms of a practical application: finding the object
at minimum distance from a given straight segment. Finally,
Section 4 gives conclusions and suggests further
improvements.

II. OBIECT-ORIENTED HIERARCHICAL
REPRESENTATION

A new hierarchical clustering algorithm for generating an
inter-object representation from a set of objects contained in a
scene is described. The algorithm is an iterative process that
builds each level of the hierarchy by grouping the bounding
spheres contained at the previous level. The process stops
when a single bounding sphere is left.

Three stages are subsequently applied at every level. In the
first stage, a fully-connected adjacency graph that keeps the
cost of grouping the different pairs of spheres present at the
current level is built. In the second stage, the minimum span-
ning tree (MST) of that graph is computed. In the last stage,
the edges of the MST are clustered based on their cost.

The edges that belong to the cluster corresponding to the
lowest cost denote pairs of spheres that are candidate to
group. Those spheres are finally grouped (substituted for their
smallest bounding sphere) if a merging criterion is satisfied.
As a result, a new level of the hierarchy is generated, which
contains the new spheres and the ones that could not been
grouped. The same three stages are then applied to the next
level. These stages are further described below.

A. Adjacency Graph Generation

Let § = {S},....,Sy} be the set of N spheres present at a
certain level A of the hierarchy. Every sphere S; has radius
r; and is centered at a 3D position C;. Those spheres will
initially be the bounding spheres of the original objects con-
tained in the scene. If two spheres S; and S. are to be
grouped, they are replaced by their smallest bounding sphere
S;i- In case several spheres {S,S,. ..., S, } are to be
grouped, they are substituted for the smallest sphere S,
computed recursively by considering pairs of spheres
(...(((a,b), c), d)...z).

The first stage of the grouping process generates a fully
connected weighted graph in which every node represents a
sphere present at level A . Every pair of nodes in the graph is
linked with an edge whose weight expresses the cost of
grouping the bounding spheres corresponding to the two
nodes linked by the edge.

The key point of this first stage is the formulation of the
grouping cost function that defines the weight associated with

(a) (b) (c)
(a) F = D/(dl+dj) <1 D< (dl+dj)
(b) F=DAd+d) =1 D =(di+d)
(c) F = D/(d,-+dj) >/ D> (d,-+dj)

Fig. 1. Illustrations of filling factors computed according to [9]. In the three
situations, the left and right configurations have similar filling factors, while
the real filling is significantly different.

every graph’s edge, since, in the end, it will determine the
order in which spheres will be grouped. This function must be
properly defined in order to achieve a well balanced and spa-
tially coherent hierarchy. Previous schemes propose cost
functions based on the attraction force between two objects
[10] or on heuristics that favor that objects of similar size are
merged, beginning with those with the smallest volume [9].

Alternatively, we define a cost function that depends on
both the size of the smallest sphere that contains the spheres
to be grouped, and a filling factor defined as the ratio between
both the volume occupied by those spheres and the volume of
their smallest bounding sphere. In other words, the proposed
filling factor is a measure of empty space, as opposed to [9],
where the filling factor is defined as the ratio between the
diameter of the bounding sphere (D) and the sum of diameters
of the merged spheres (d;+d,).

Fig. 1 illustrates some situations where the filling factor F
proposed in [9] is not a good indication of the real filling. For
example, the smallest bounding sphere in Fig. 1(b) [right
grouping] should be the one with the best filling factor. How-
ever, both bounding spheres have the same factor (F=1). The
same occurs in Fig. 1(a) and Fig. 1(c): the configurations on
the right have better filling than the ones on the left, while
their filling factors are approximately the same.

Another advantage of the proposed technique over the one
defined in [10] and [9] is that the value of the computed fill-
ing factor is preserved in the hierarchy as an indicator for
further grouping. Thus, every sphere S; is associated with a
filling factor F;. The bounding spheres corresponding to the
original objects of the scene have a filling factor equal to one.
In turn, when two spheres S; and S. are grouped, the filling
factor of their minimum bounding sphere S; : is formulated
as:

Fij = (Fl.Voli+FjV01j—Vol )/Volij (1)

overlap
where Vol;, Vol; and Vol are the volumes of §;, S; and
Sij respectiv.ely, and. VOluverlap is the volume .defi.ned by
the overlap (intersection) between §; and S, which is com-
puted as the union of the volumes of two spﬂerical caps (Fig.
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Fig. 2. (top) Portion of a spherical cap cut off by a plane. (bottom) Illustration
of two spherical caps defining the volume of overlap (intersection) between
two spheres.

2): Voloverlap = F,V.+ Fchj . The volume of a spherical
cap is defined as:

T 2 2
Vi = E(Brc +h. ) (2)

where 7, is the radius of the cap’s base and h,; is the cap’s
height, Fig. 2(top). The radius of the cap (circle of intersec-
tion between the two overlapped spheres) and the heights of
the two caps depend on the distance d between the centers of
the two spheres and their size. If the cap corresponding to the
sphere of radius r; has height h;, and the cap of the sphere of
radius rj has height hcj, Fig. 2(bottom), the radius of the com-
mon circle 7, is computed as follows:

S 1) =) = (= 1))

r. ¥ 3)
h.; and h; are defined as:
2= (r,—d)* rr=(r,—d)’
By = Lk gy =l L @)
2d a 2d

V.;and V,; are respectively computed from (h;, r.) and (h
rc) by applying (2).

Besides taking into account the previous filling factor, the
proposed cost function also considers the size of the bound-
ing spheres in order to enforce a monotonous growth of the
groups of spheres. Let r;; be the radius of the smallest bound-
ing sphere, S;:, which contains §; and R The proposed cost

cp

ij

(GD) |(A,©) |[(D,E) (C,B) |(FH) [(B,F) |(D,F) | Nodes
3.7 4 4.1 48 | 7.1 7.3 | 103 | Costs
EO El E2 ............................ Er Edges

L
List of MST edges in ascending order of cost

€ ={(GD), (A,0), (D.E), (C.B)}

Fig. 3. List of the MST’s edges sorted in ascending order of cost (the cluster
corresponding to the lowest costs is shadowed).

funCtiOIl iS defined as:
=7 /1 5

with F i computed according to (1). The smaller and closer
two spheres are, the lower their grouping cost will be. Intu-
itively, spheres with small merging costs should tend to be
grouped together as they would denote close objects in the
scene.

This process is intended to create a hierarchy in which
leaves, which represent the original objects, are progressively
grouped until the scene’s bounding sphere at the root of the
tree is obtained. The proposed strategy favors that small clus-
ters are created first, as well as a progressive growth of the
radius of the resulting spheres when the hierarchy’s level is
reduced. By using a more realistic filling factor, objects are
grouped in a more intuitive way than in [9].

If several spheres {S,S,,...,S } are to be grouped
together, the filling factor and cost function associated with
their smallest bounding sphere S, _ are respectively com-
puted by applying recursively: F,, = Feap 3z and

ab...z = S{ab...}z -
B.  Minimum Spanning Tree Generation

Once an adjacency graph has been created, the next objec-
tive is the computation of its minimum spanning tree. The
minimum spanning tree (MST) of a graph G is the acyclic
subgraph of G that contains all the nodes of G and such that
the sum of the grouping costs (5) associated with its edges is
minimum. The MST of a graph with M edges and N nodes
can be efficiently computed in O(MlogN) by applying
Kruskal’s algorithm [11].

C. Object Clustering and New Level Generation

The outcome of the previous stage is a list of edges that
constitute the MST of G. The current stage clusters those
edges based on their associated grouping costs (5) and deter-
mines the cluster corresponding to the lowest cost. A new
level of the hierarchy is then created. It contains new spheres
obtained by merging the nodes linked by edges that belong to
that lowest cost cluster, as well as the remaining spheres that
cannot be merged.

In the majority of general purpose clustering algorithms
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proposed in the literature, the desired number of clusters must
be specified in advance. Since this information is not avail-
able in the problem at hand, X-means [12], a generalization of
K-means that estimates the number of generated clusters, has
been utilized for clustering the edges of the MST according to
their grouping cost.

Let § = {Ey, E|,....E,. ...E, } be the set of edges con-
tained in the cluster generated by X-means corresponding to
the lowest grouping cost. Those edges are sorted in ascending
order of cost and are considered in sequence, starting with the
one of lowest cost, E,. An edge E, links two spheres Si and
S, at the current level A of the hierarchy. If §; and Sj have
not already been merged when previous edges in & wefe con-
sidered, E; denotes a valid merging, and the smallest sphere
S;; thatencloses S; and S is generated as anew object. This
spilere is associated with a filling factor F ij (D).

On the contrary, if S;, S, or both have already been
merged with other spheres when previous edges in & were
considered, giving rise to new bounding spheres, the latter
referred to as §; and/or §,, E, will only be accepted as a
valid merging if its cost, C, belongs to the cluster & (e.g.
assuming both spheres have been previously merged
€;;<C, . where m is the edge with the highest cost in the
computed cluster).

This acceptance criterion is applied in order to handle situ-
ations where a set of spheres are equally distributed over the
scene, for example, placed at the same distance along a row.
If all the edges in & were accepted in such a case, an unbal-
anced tree would be generated.

After processing all the edges contained in &, a new level
A—1 is generated. This new level only contains the merged
spheres generated after processing the edges belonging to &,
as described above, and those spheres not merged during that
process. Both the new and old spheres will become the nodes
of the adjacency graph generated at level A—1, and the
whole process will be iterated.

The previous process is illustrated with a simple example
based on the edge list shown in Fig. 3. Capital letters identify
bounding spheres present at that level. From that list, edges
that have a similar cost {(G, D), (A, C), (D, E), (C, B)} are
clustered together, defining the set & .

The first considered edge is the one joining nodes G and
D, as its cost is the lowest (3.7). Nodes G and D have not
been previously considered. Therefore, a first group, GD, is
formed and associated with the smallest sphere that encloses
both G and D and a filling factor Fgp. The second edge in
ascending order is the one joining nodes A and C (cost 4).
Again, none of them have been previously considered. Thus,
a new group, AC, is created and associated with the smallest
sphere that embodies A and C, and a filling factor F} .

The third edge is the one joining nodes D and E (cost 4.1).
Since D belongs to an already merged group (GD), the feasi-
bility of GDE is analyzed. In order to do so, the filling factor
of the new candidate group, F;pg, is computed and the corre-
sponding cost, {;,» compared to {5, which is the highest
cost in the cluster. If {; <.y, GDE is accepted as a new
group and the smallest sphere that contains G, D, and E is cre-

{AC},{GDE},B,FH Level,
@ @DE e Level;
@ e Level,

Fig. 4. Final hierarchical representation in the example.

ated and assigned its filling factor Fpp. If the merging is not
accepted, edge D-E is discarded.

The final edge in & is the one joining nodes C and B
(weight 4.8). Similarly to before, since C belongs to an
already generated group, AC, the new candidate cluster ABC
is considered. If we assume in this case that C,p-~>Crp .
edge C-B is discarded and so is group ABC.

In the end, the two new groups {AC, GDE} and the nodes
that could not be merged {B, F, H} constitute the objects
(spheres) that will be processed at the next level of the hierar-
chy, in which the process starts over from the adjacency
graph generation stage (section 2.1). Fig. 4 shows an illustra-
tion of the final hierarchical structure obtained after applying
the proposed algorithm.

III. EXPERIMENTAL RESULTS

The proposed technique has been applied to synthetic 3D
scenes of increasing complexity. CPU times have been mea-
sured on a 650 MHz Pentium III PC.

Fig. 5(top) shows a scene with 24 objects. Each object is
represented by its bounding sphere. In this example, a hierar-
chical representation of 8 levels was computed in 0.01 sec.
Fig. 5(bottom) presents different levels of the hierarchy. Dark
solid spheres correspond to objects merged at the previous
level. Dark wireframe spheres represent objects that will be
merged at the current level. Finally, light wireframe spheres
represent non-merged objects at that level. The levels are rep-
resented at different scales.

Comparisons with both [9] and [10] showed that although
all the algorithms produce comparable hierarchical represen-
tations when scenes containing few objects were considered,
the hierarchical representations, as well as the CPU times, are
considerable better with the proposed algorithm when com-
plex and large scenes were considered.

Moreover, these advantages are emphasized when a partic-
ular scene containing equally-sized objects, regularly
distributed over the space, is considered; neither [9] nor [10]
can appropriately handle this situation.

Advantages in front of [9] mainly lie in the definition of a
more realistic filling factor measure along with a more effi-
cient cost updating strategy (the cost between all objects does
not have to be computed after every new object generation
stage, but after every new level generation stage). The pro-
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Level 8 Level 6
(24 objects) @ @ (10 objects)
8 4
Level 5 Level 3
(9 objects) (4 objects)
Level 2 Level 0
(3objects) (1 object)

Fig. 5. (top) Original scene consisting of 24 objects. (bottom) Levels of the
computed hierarchical representation (dark solid spheres correspond to objects
merged at the previous level; objects merged at the current level are
represented in dark wireframe).

Fig. 6. (top) Third level of an object-oriented representation of a scene defined

by 21 objects (points Py and P, were randomly placed over opposite faces of

the bounding box). (bottom) Fourth level of the corresponding scene-oriented
hierarchy (octree).

posed algorithm also presents advantages in front of [10].
These advantages can be appreciated in the structure of the
resulting hierarchical representation, while the CPU times of
both techniques are quite similar.

The proposed technique has also been compared to the
well-known octrees from the point of view of a practical task
consisting of determining the object at minimum distance
from a given straight segment (see Fig. 6). The comparison
has been carried out over scenes defined by 50, 100, 150,
200..., 500 randomly placed spheres of random size. 500 ran-
dom segments were tested over each scene. As an example,
Table I presents the number of clusters (objects) obtained at
every level of the hierarchy for the case of 100 spheres. A
total of 21 levels were generated in 0.07 sec.

In order to determine the closest object to a segment, a
search algorithm explores the given hierarchical structure
(octree or proposed technique) starting from its root. At every
iteration, those spheres intersected by the given segment are
removed and the distances from the segment to their children
are computed.

This recursive process is applied until either no sphere is
intersected by the segment or all the intersected spheres are
leaves of the tree. A comparative study has been carried out
over scenes containing different amounts of objects.
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TABLE I
HIERARCHICAL REPRESENTATION OF A SCENE DEFINED BY 100 OBJECTS RANDOMLY PLACED WITH A RANDOM SIZE.

Level |O|1]2]3]|4|5|6]7]8

9

10|11 (12 13|14 |15|16|17 |18 |19]|20 |21

Objects 13|47 |8]|11]15|18]20

21

2512712913032 |37 (4749|5968 |78 (100

450 T T T T T T T T T T
mm Octree
Proposed technique

350

300

250 -

200

Iterations

100

50

Objects

Fig. 7. Average number of iterations necessary to find the nearest object to 500
different random segments, by using both the hierarchies generated with the
proposed technique and octrees. The scenes contain 50, 100, 150, .... up to 500
objects.

The octree is recursively expanded until its leaves are one
third the size of the smallest input sphere. A bar diagram
showing an average number of iterations, computed for the
500 random vectors, necessary to determine the nearest
object corresponding to both octrees and the hierarchies gen-
erated with the proposed techniques is presented in Fig. 7.

Fig. 7 shows that the amount of iterations required to find
the nearest object to a segment is at least twice and a half
times lower with the proposed object-oriented technique than
with octrees in all cases.

IV. CONCLUSIONS

A new technique for generating a hierarchical representa-
tion of the objects contained in a 3D scene has been
presented.

The proposed technique consists of three stages. The first
stage computes the cost of grouping all the pairs of objects in
the scene and generates an adjacency graph with those costs.
In the second stage, the minimum spanning tree (MST) of
that graph is generated. In the last stage, an efficient cluster-
ing algorithm is used to select the set of objects to be merged
at that level. These stages are applied until a level with a sin-
gle object is reached.

Spheres are the most common bounding volume due to the
simplicity both to represent them and to detect intersection
among them. However, not every object contained in a given
scene can be accurately represented by a single sphere.

Hence, further work will consist of the study of other
bounding volumes, such as ellipsoids [13]. The utilization of
these new geometric primitives involves the definition of new
cost functions. In addition, practical applications of the pro-
posed 3D hierarchical representations as a means to speed-up
path planning or collision avoidance algorithms will be
developed.
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