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ABSTRACT

This paper presents a novel hybrid approach that com-

bines state of the art fitting algorithms: algebraic-based and

geometric-based. It consists of two steps; first, the 3L algo-

rithm is used as an initialization and then, the obtained result,

is improved through a geometric approach. The adopted geo-

metric approach is based on a distance estimation that avoids

costly search for the real orthogonal distance. Experimental

results are presented as well as quantitative comparisons.

Index Terms— Implicit Polynomial Fitting, Algebraic

and Geometric Approaches, LMA.

1. INTRODUCTION

Implicit polynomial (IP) fitting has been used in the computer

vision field for obtaining compact 2D or 3D data representa-

tions. These representations have been largely exploited in

object description and classification (e.g., [3, 8, 11]).

The fitting problem can be modelled as an optimization

problem finding the set of parameters that minimize a distance

measurement between the given set of points and the result-

ing implicit polynomial. The most natural way to define the

distance is to measure the deviation of the implicit function

values from the expected values (i.e., level set) at each given

point. In other words, the value of the polynomial should

reach zero at the location of the given data points. This mea-

sure criterion is referred in the literature as algebraic distance
[4, 7, 9].

Another distance measure, referred as orthogonal or ge-
ometric distance, is defined as the shortest distance from the

given point to the fitting curve/surface. On the contrary to

the algebraic distance, this distance has an intuitive geomet-

ric meaning, and its final result makes sense as a consequence.

Although this definition of the distance is complete and leads

us to the best fitting result, it has a nonlinear nature with re-

spect to the model parameter, which sometimes discourages

its use. Furthermore, since there is not a closed formula to
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compute the shortest distance to a general implicit polyno-

mial, iterative approaches should be used to compute this or-

thogonal distance (e.g., [1, 2]); alternatively, an approxima-

tion to that shortest distance could be computed and used as

the residual value (e.g., [6, 10]).

Algebraic and geometric distances are two different view-

points for the fitting problem. Although both of them could be

exploited for some optimization models leading to the optimal

parameters in their own sense, the frameworks they use are

different. Algebraic fitting methods are based on least square

approaches giving a non-iterative unique solution, while the

geometric ones are based on some non-linear models giving

the solution through iterative algorithms.

The current work proposes a novel scheme that combines

a well known algebraic distance based approach—the 3L al-

gorithm [4]—with a geometric one based on a novel distance

estimation [10]. In other words, the geometric stage is in-

tended to increase the accuracy of the algebraic result by in-

corporating a geometric criteria. The rest of the paper is or-

ganized as follows. Section 2 describes the proposed scheme.

Section 3 gives experimental results and comparisons and fi-

nally, conclusion and future work are presented in section 4.

2. PROPOSED APPROACH

Let f be an implicit polynomial of degree d represented as:

f(x) =
∑

(i+j+k)≤d
{i,j,k}≥0

ai,j,k · xi · yj · zk = 0, (1)

or, in a vector form:

f(x) = mTa = 0, (2)

where m is the column vector of monomials and a is the poly-

nomial coefficient vector. The proposed approach consists of

two stages. First, the polynomial coefficients are initialized

by using an algebraic fitting algorithm. Then, the obtained

result is improved by means of a non-linear optimization ge-

ometric approach. The geometric approach is based on an

estimation of the shortest distance. The two stages defining

the proposed scheme are detailed next.
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Fig. 1. (a) Level sets: original data (Γ0), outer offset (Γ−δ)

and inner offset (Γ+δ). (b) A 3D illustration of the 3L algo-

rithm.

2.1. COEFFICIENT VECTOR INITIALIZATION

The above coefficient vector a in (2) is initialized by using

the well known 3L fitting algorithm [4]. In short, the 3L al-

gorithm is a linear least squares explicit polynomial fitting

that consists in generating two additional level sets: Γ−δ and

Γ+δ from the original data set Γ0. These two additional data

sets are generated so that one is internal and the other is ex-

ternal, and are placed at a distance ±δ from the original data

along a direction that is locally perpendicular to the given data

set (Fig. 1(a)). Hence, the 3L algorithm incorporates a con-

trol for a local continuity resulting in a more stable solution.

Figure 1(a) depicts the original data with the two additional

level sets; the corresponding 3D illustration is presented in

Fig. 1(b).
Considering the three level sets: {Γ−δ,Γ0,Γ+δ} the

equation (2) could be represented by using a block matrix

M3L and a block column vector b:

M3L =

⎡
⎣

MΓ−δ

MΓ0

MΓ+δ

⎤
⎦ , b =

⎡
⎣

−c
0
+c

⎤
⎦ , (3)

where MΓ0 , MΓ+δ
, MΓ−δ

are matrices of monomials calcu-

lated in the original, inner and outer sets respectively; ±c are

the corresponding expected values in the inner and outer level

sets. Then, the least squares solution for a is obtained:

a = M†
3Lb = (MT

3LM3L)
−1MT

3Lb, (4)

where M†
3L denotes the pseudoinverse of M3L.

2.2. COEFFICIENT VECTOR UPDATING

The computation of the polynomial coefficient vector a in the

previous stage lacks of geometric meaning; hence it could

happen that this polynomial coefficient vector is not an ac-

curate approximation of the given set of points since the three

sets of points (Γ−δ , Γ0 and Γ+δ) were equally considered by

the least squares solution. In order to overcome this problem,

in the current work a geometric fitting approach is used for

improving the obtained results.

Geometric fitting approaches rely on the shortest distance

—or an approximation of it—between every point and its cor-

responding one on the curve/surface. Thus, in general case of

geometric methods we have the following optimization prob-

lem:

mina(

n∑
i=1

minp̂id(pi, p̂i)), (5)

where each p̂i is the correspondence of pi on the curve/surface.

Theoretically, both unknown polynomial coefficients and

the correspondences must be found simultaneously, but prac-

tically this problem is tackled by first assuming an initial

curve/surface (in the proposed scheme the result from Sec-

tion 2.1 is used for speeding up the process), and then refine

it till convergence is reached. So, the fitting problem is split

up into two stages: 1) point correspondence search; and 2)

surface parameter refinement. The first stage deals with the

inner part of (5), while the second one concerns about the

outer one.

Regarding to the first stage, we need to find the corre-

spondence for each data point. For this purpose, two different

strategies have been proposed in the literature: (a) finding the

shortest distance by solving a non-linear system (e.g., [2, 1]);

and (b) computing an estimation of the shortest distance (e.g.,

[6, 10]). In the current work, costly iterations are avoided by

computing an efficient estimation of the geometric distance

[10], which despite other approaches, is not based on a single

direction. It is briefly explained in the next section.

2.2.1. DISTANCE ESTIMATION

First a simplex is constructed through each point and its inter-

sections along the coordinate axis. Figure 2(a) and Fig. 2(b)
show the simplex in 2D and 3D cases respectively. In the 3D

case, having constructed the tetrahedron, its height segment

is considered as an approximation of the geometric distance.

Precisely speaking, this tetrahedron is defined by the given

point and three intersections satisfying fa(x, yp, zp) = 0,

fa(xp, y, zp) = 0 and fa(xp, yp, z) = 0, where (xp, yp, zp) is

the given point.

In the particular case tackled in this work, since the fitted

curve/surface is defined by the implicit equation (1), the inter-

section points are found by finding the root of a one dimen-

sional function close to the data point. In order to estimate a

root an ordinary algorithm like the Newton’s method could be

used.

A direct formula to describe the estimated distance can be

obtained by using a mathematical trick. Without loss of gen-

erality the 3D case is considered here. Let r, s and t be the

three intersections with the current surface, which create a tri-

angular planar patch (see Fig. 2(b)). Since the volume of the

tetrahedron is defined as the product of the area of each base
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Fig. 2. Illustration of the simplex used for estimating the ge-

ometric distance: (a) 2D case; (b) 3D case.

by its corresponding height, three sets of expressions lead us

to the same value. Hence, the height of the tetrahedron, dTH ,

could easily be computed from the following relationship:

dTH = (|pr|.|ps|.|pt|)/|�rs× �rt|, (6)

where × refers to the cross product operator between two vec-

tors. Similar relationship can be obtained in the 2D case, but

by using the area of the triangle instead of the volume. More

details can be found in [10].

2.2.2. NON-LINEAR OPTIMIZATION

As a result from the previous stage the total distance of the

data set to the current curve/surface has been found. Hence,

now an optimization framework could be used to refine the

curve/surface parameters. LevenbergMarquardt algorithm

(LMA) is a well-known method in non-linear optimization

[5], which in some sense interpolates between the Gauss–

Newton algorithm and the gradient descent.

The geometric distance (6) provides a straightforward

method to approximate the orthogonal distance. Moreover,

its Jacobian matrix could be directly derived through the dif-

ferentiation rules. The Jacobian matrix shows the sensitivity

of each di with respect to the parameter vector, and could be

calculated from (6):

Dj |dTH | = (|�rs× �rt|.Djυ − υ.Dj |�rs× �rt|)/|�rs× �rt|2, (7)

where υ shows the volume of the tetrahedron, and Dj =
∂/∂cj is the differentiation operator respect to the parameter

vector. In order to calculate each term of the (7) the implicit

differentiation rule must be used for each intersection point.

Having estimated the geometric distance (6) and its Jaco-

bian matrix through (7) it is easy to handle LMA in order to

refine the curve/surface parameters:

�at+1 = �at + β��a,

(JTJ + λdiag(JTJ))��a = JTD, (8)

where β is the refinement step; diag(JTJ) is the diagonal

matrix containing the elements of (JTJ); �a represents the

refinement vector showing the amount of change in the cur-

rent polynomial coefficients; λ is the damping parameter in

LMA which shall be adjusted in each iteration; and the vector

D = (d1(at), ..., dn(at))T corresponds to the distances (com-

puted from (6)). Parameter refinement (8) must be repeated

till convergence happens.

3. EXPERIMENTAL RESULTS

This section presents experimental results obtained with the

proposed hybrid approach as well as comparisons with the

3L algorithm [4] and an orthogonal distance based fitting ap-

proach [1]. The results are provided for both 2D and 3D cloud

of points.

Figure 3 shows 2D contours fitted by fifth and sixth degree

IPs (based on its shape complexity) using the 3L algorithm

(Fig. 3(a)), the proposed approach (Fig. 3(b)) and a non-

linear orthogonal distance based approach [1] (Fig. 3(c)).
The fitting error, computed through the whole set of points

with [1], is used as a quantitative criterion for comparison;

it is referred as AFE: Accumulated Fitting Error. In all the

cases the accuracy obtained with the proposed approach con-

siderably improves the one obtained with the 3L algorithm;

moreover, it is comparable (in one case even better, see the

last row) to the results obtained when the non-linear approach

is used. Although out of the scope of the current work, it

should be mentioned that the proposed approach is about ten

times faster than [1].

Figure 4 shows two examples with synthetic 3D data sets.

In both cases fifth degree IPs are used. The proposed ap-

proach converges to almost the same result as [1], but twice

faster. The same number of iterations was performed with [1]

and with the proposed approach (i.e., 50 iterations during the

LMA optimization step). The surface presented in Fig. 4(top)
is the result obtained with the proposed approach (AFE=0.68)

when a 3D data set containing 360 points is used. This result

is similar to the one obtained with [1] (AFE=0.69), while is

considerable better than 3L (AFE=1.89). Figure 4(bottom)
shows the result of the proposed approach (AFE=1.03) from

a cloud of 438 points. Again, it is comparable with [1]

(AFE=1.28) and better than 3L (AFE=2.67).

4. CONCLUSIONS

This paper presents a novel scheme for exploiting the speed

of an algebraic based approach together with the accuracy

of a geometric distance based approach. The adopted geo-

metric approach avoids the time consuming task to find the

real orthogonal distance by using an efficient distance estima-

tion, which despite being proposed for quadrics, in the current

work is used for higher degree polynomials. Experimental re-

sults show improvements both in accuracy and CPU time. As

future work, the use of the proposed scheme will be consid-

ered for object recognition.
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AFE = 3.26 AFE = 0.74 AFE = 0.71

AFE = 4.82 AFE = 1.13 AFE = 0.96

AFE = 8.82 AFE = 3.37 AFE = 1.05

AFE = 5.70 AFE = 0.60 AFE = 0.86

(a) (b) (c)

Fig. 3. 2D contours fitted by fifth (1st row) and sixth (2nd, 3rd

and 4th rows) degree IPs: (a) Results from the 3L algorithm;

(b) the proposed approach; (c) results from [1], which is used

as ground truths. AFE shows the accumulated fitting error

respectively. The last row shows a case where [1] stops due

to the maximum iteration criterion, and cannot reach the error

by the proposed approach.
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