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ABSTRACT

This paper presents the combined use of gradient and mutual infor-
mation for infrared and intensity templates matching. We propose
to joint: (i) feature matching in a multiresolution context and (ii)
information propagation through scale-space representations. Our
method consists in combining mutual information with a shape de-
scriptor based on gradient, and propagate them following a coarse-
to-fine strategy. The main contributions of this work are: to of-
fer a theoretical formulation towards a multimodal stereo match-
ing; to show that gradient and mutual information can be reinforced
while they are propagated between consecutive levels; and to show
that they are valid cost functions in multimodal template matchings.
Comparisons are presented showing the improvements and viability
of the proposed approach.

Index Terms— Mutual information, Pattern matching, and In-
frared imaging.

1. INTRODUCTION

The coexistence of infrared cameras with other sensors has opened
new perspectives for the development of multimodal systems. One
of the challenges is to find the best way to fuse all this information
in a useful representation. In the current work the matching of im-
ages from different spectral bands is considered. These images are
provided by a calibrated stereo rig, which consists of two cameras
capable of measuring emissions in visible/infrared spectrum.

The literature on multimodal template matching can be broadly
divided into entropy-based methods and feature-based methods. In
the current work a hybrid approach is proposed. It exploits mu-
tual information and gradient information, in scale-space represen-
tations. Mutual information is a concept derived from information
theory. It measures the amount of information that one random vari-
able contains about another. It is a powerful concept in situations
where no prior relationships between the data are known. The pre-
vious property makes mutual information the ideal tool to address
problems involving signals without an apparent relationship.

Viola intuitively introduces mutual information as a measure of
alignment between images and 3D models [1]; next, it was formal-
ized in [2], only for images. The importance of these early contri-
butions was to exploit properties of mutual information in the field
of multimodal image processing, showing its usefulness. Just few
years later, a cost function (or dis/similarity function) for stereo vi-
sion [3] was proposed, showing that correspondences can be found
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by maximizing mutual information, although its performance is not
better than other less complex cost functions.

Mutual information has been also largely used for medical image
registration. In this field, [4] proposes to combine mutual and gra-
dient information, showing an improvement with respect to classical
mutual information based formulations. A multiresolution scheme
for matching, which is only based on mutual information, has been
presented in [5] showing its viability. An advantage of multireso-
lution schemes is the information suppression, which allow to ana-
lyze the structure of the images with different level of details. Thus,
the information of the current level can be enriched by using the
prior knowledge collected from previous levels in the hierarchy. A
strategy such as the one mentioned above is presented in [6], being
restricted to probability propagation. In the current work not only
mutual information (I) but also gradient information (IG) are prop-
agated through two different scale-space representations. The first
one is based on a scale-space stack while in the second a pyramidal
representation is used for comparisons.

The main contributions of the proposed approach are as follow:
(a) evaluate mutual information performance once gradient informa-
tion is embedded; (b) increase the discriminative power by means of
a classical pyramidal representation; and (c) show the improvements
by propagating mutual and gradient information (I and IG). The
proposed approach is evaluated with a large number of templates; up
to our knowledge previous works were, on the one hand, specially
devoted to the registration problem; and one the other hand, they
were validated on few samples. The paper is organized as follows.
Section 2 presents the proposed approach together with basic formu-
lations. Experimental results and comparisons are given in Section
3. Finally, conclusions are detailed in Section 4.

2. PROPOSED APPROACH

This section presents the key concepts used for the derivation of the
proposed scheme. Firstly, a concise description of the problem from
the information theory point of view is introduced. Next, all the
essential topics that composes the proposed solution are covered,
including: entropy, mutual information, scale-space representation,
and the use of gradient information with mutual information. Fi-
nally, the proposed scheme for mutual information propagation, in
two scale-space representations, is introduced.

2.1. Problem statement

The template matching problem could be stated as: let Il be the
neighborhood of a pixel with local image coordinates Il(x, y) (usu-
ally referred in the literature as template window); and a searching
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Fig. 1. Examples used for testing. (left) Infrared templates to be
matched. (right) Corresponding search space (intensity images).

space consisting of a set of regions, referred as matching windows
(Ir) extracted from another image (Ir), the challenge is to find the
best matching.

In the current work, without loss of generality, the matching win-
dows Ir will move through the epipolar line that relates two rectified
images. Therefore, the searching space is a collection of windows
centered on Ir(x+ d, y) that does not belongs to the same modality
of the template. The parameter d is the disparity, and represents the
candidate disparity during the matching process. Figure 1(a) shows
an infrared template Il and Fig. 1(b) its searching space (intensity
image). Another illustration is presented in Fig. 1(c) and Fig. 1(d).

2.2. Image template matching and information theory

An interesting point of view about information theory was presented
in [7], which could be useful in the multimodal matching problem.
Based on this theory, we reformulate the matching problem. The
main change that has to be done, is to assume that both template
and matching windows are two information sources, which produce
a succession of symbols in a random manner. A more simple way to
visualize this is to associate the symbols with image pixels, or other
implicit information. Strictly speaking, let (Ω,B, P ) be a proba-
bility space, where Ω denotes a sample space, B a space of events
defined as σ-field B of subsets of Ω, and a probability measure P
that assigns a real number P (F ) to every member F of the σ-field
B. In our case, the probability space (Ω,B, P ) is the mathemati-
cal generalization of the interaction between: (a) symbols that could
be intensity or infrared measurements; (b) the space of all possible
output symbols, usually referred as alphabet; (c) events, which are
sequences of symbols that can be drawn by sources of information;
and (d) a probability measure assigned to events.

We can assume that Il(x, y) : Ω → AIl and Ir(x + d, y) :
Ω → AIr are two random variables defined on (Ω,B, P ) with al-
phabets AIl and AIr , respectively. There are several ways to define
these alphabets, the most frequent, and used in this paper, consists
in quantizing the pixel values and binning them in order to obtain a
discrete alphabet Af = {a1, a2, ..., a‖Af‖}.

2.2.1. Entropy

The entropy of a discrete alphabet Af of random variables defined
on the probability space (Ω, β, P ), with a probability mass function
pf , is defined as:

H(Af ) = −
∑
a∈Af

pf (a) log pf (a). (1)

Usually, entropy is associated with a measure of randomness;
it does not depend on the current values of pixels of Il or Ir , but
on the probability distribution of Af . So, a low entropy of Af can
be interpreted as a non random alphabet, where there is no uncer-
tainty. For example, texture-less regions have a lower entropy than
a highly textured region. In order to relate two different sources of

information, without an apparent correspondence, it is necessary to
find some content in common. As it was mentioned above, the link
or bridge that perform this task is the joint entropy, concept related
to mutual information.

2.2.2. Mutual information

Mutual information I is estimated by establishing alphabets to en-
code the pixels of Il and Ir . The mutual information is then obtained
from every encoded pair. It is defined as:

I( Il; Ir) =
∑

ai∈AIl

∑
bj∈AIr

pIlIr (ai, bj) log
pIlIr (ai, bj)

pIl(ai) pIr (bj)
, (2)

where pIl and pIr are the marginal probability mass functions of al-
phabets and pIlIr the joint probability mass function. The alphabets
AIl and AIr are built by normalizing each window independently
(range [0, 1]) and then quantizing them into Q levels. The joint
probability mass function pIlIr is a 2-dimensional matrix. Before
being normalized, it holds the number of times symbol (ai, bj) is
observed in Il and Ir . Notice that the alphabets are symbolized as
AIl = {a1, a2, ..., aN} and AIr = {b1, b2, ..., bN}. The marginal
probabilities are determined by summing along each dimension of
the previous matrix.

2.3. Scale-space representation

This section presents the basic notions about scale-space, which is
used to build two data structures and to evaluate the scheme of propa-
gation. Firstly, a scale-space stack representation is presented. Then,
a pyramidal representation, which is faster than the previous one, is
described.

2.3.1. Scale-space stack

The scale-space representation L : RN × R
+ → R for an arbitrary

dimension N is obtained by convolving an image with a Gaussian
derivative kernel of order n. Notice that, the zero scale is also in-
cluded and corresponds to the given image. Following the notation
presented in [8]:

Ln(x; t) = gn(x; t) ∗ Ik, (3)

where x = (x1, ..., xN )T ∈ R
N , t ∈ R

+ is the current scale level,
Ik is the current image, and gn(x; t) is the Gaussian derivative kernel
of order n. If n = 0 the Gaussian function is obtained, otherwise
its corresponding derivative kernel. In this paper, since only gradient
information is required, L0 and L1 are computed for Il and Ir . It
means a stack of Gaussian blurred images and their corresponding
first order derivative images.

2.3.2. Pyramidal representation

Another way to generate a scale-space representation is by means
of a pyramidal hierarchy, which is similar to the method described
above. It consists in adding a new stage after the Gaussian filtering,
which apply a downscale algorithm, sampling the output image at
a constant rate. In this work, we have explored the use of an half
octave Gaussian pyramid of zero and first order [9]. This represen-
tation has been chosen due to the reduction factor; hence it assure
an optimal propagation of mutual information. Figure 2 shows two
pyramidal representations of three levels; (a) and (b) correspond to
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(a) L0(x; t) of Ir (b) L1(x; t) of Ir (c) L0(x; t) of Il (d) L1(x; t) of Il

Fig. 2. Three level pyramidal representations of two images; (a) and
(b) intensity image; (c) and (d) infrared image.

an intensity image, while (c) and (d) to an infrared image. Note
that in the two coarser levels the image features are still available, in
spite of their small sizes. See [8, 9, 10] for a detailed description on
pyramidal representations.

2.4. Incorporating gradient information

The gradient information is incorporated following the formula-
tion presented in [4]. Gradient images are calculated as mentioned
above, using the L1(x; t) scale-space representation (pyramid or
scale-space stack). It is important to notice that intensity and in-
frared changes are not necessarily equals (nor in orientation neither
in magnitude). However, since both images depict the same scene,
corresponding gradient vectors could appear in both modalities and
their phase difference be near to 0 or π (phase or counter-phase).
Therefore, these vectors could be used to unveil possible matchings.
Let x and x′ be two corresponding points that belong to Il and Ir ,
respectively. Then, their phase difference is defined as:

θ(x; x′; t) = arccos

(
L1,l(x; t) · L1,r(x

′; t)
|L1,l(x; t)| |L1,r(x′; t)|

)
, (4)

where L1,l(x; t) ·L1,r(x
′; t) is the dot product of their gradient val-

ues in x and y direction. The phase difference (eq. 4) is weighted by
a function w(θ; t) that penalizes those gradient vectors that are not
in phase or counter-phase:

w(θ) =
cos(2 θ) + 1

2
. (5)

Finally, the gradient information is incorporated into the mutual
information formulation as in [4]:

IG( Il; Ir; t) = I( Il; Ir; t) ·G( Il; Ir; t), (6)

where I( Il; Ir; t) is the mutual information and G( Il; Ir; t) is the
gradient information, computed as:

G =
∑

x∈Il, x’∈Ir

w(θ(x; x’; t)) min(|L1,l(x; t)| |L1,r(x
′; t)|). (7)

2.5. Propagating mutual and gradient information

The current work proposes to improve the discriminative power of
mutual information in two ways: (a) propagating mutual information
through a scale-space stack and a pyramidal representation; and (b)
propagating both mutual and gradient information through a scale-
space stack and a pyramidal representation. Note that [6] proposes a
similar scheme but for propagating joint probability (pIlIr ); while,
our approach directly spread the I and IG between consecutive
levels, allowing changes in the sizes of the bins that represent the

sources of information. This supposes a great advantage because at
each level an optimum alphabet can be used, which is unsuitable in
a scheme such as the one proposed by [6].

Our approach starts by computing I and IG at a coarser level.
Notice that in the case of a stack all the images in the stack have the
same size. Thus, I(Il; Ir; t) and I(Il; Ir; t − 1) have an interscale
correspondence and the next equation (8) can be directly applied.
However, in the case of a pyramidal representation the level t − 1
contains a smaller image than the one in the current level t (down-
sampling). Therefore, two situations must be considered: (a) if x is
not present in the previous level, only its value at the current level is
considered (I or IG) and the term λ in eq. (8) is set to 1; and (b) if
x is present in the previous level, then a cubic spline interpolation is
used to compute its Iprior , since we are using rectified images only
ancestors on the epipolar line are considered (one dimensional inter-
polation problem); thus Iprior is obtained from its neighborhood at
(t− 1). The propagation rule is defined as:

Icurrent(x; t) = λ Icurrent(x; t) + (1− λ)Iprior(x; t− 1), (8)

where λ is the confidence of current I or IG.

3. EXPERIMENTAL RESULTS

In order to evaluate the proposed approach, small parts of an in-
frared or color images are cropped and used as templates—61600
patterns in total were extracted from OTCBVS Benchmark Dataset
[11]. I and IG are cost functions computed between the template
and all possible windows on the corresponding searching space; they
are obtained without disparity restrictions. The correct match is lo-
cated at point d where the cost function reaches the maximum value

argmaxd{I(Il(x, y); Ir(x+ d, y))}, similarly for IG.

The matching cost of a template and a candidate is obtained by
computing I (eq. (2)) and IG (eq. (6)). For example, Fig. 3(a) shows
the results when the template depicted in Fig. 1(c) and the search-
ing space in Fig. 1(d) are matched. Once the cost over the whole
searching space is computed the three largest local maximum val-
ues are extracted (only three values were selected just for the sake
of presentation simplicity). These values are used to quantify the
results, which are depicted in Tables 1 and 2. Since color and in-
frared images in [11] are registered, the correct matches are known
before hand. Then, it is possible to determine the correct one among
the three local maximum selected above (a tolerance range of 2 pix-
els for d is used). Tables 1 and 2 present the percentages of cor-
rect matching that corresponds to first, second or third position. If a
winner− takes−all scheme was used, then the number of correct
matches will be just the first column of these tables. The proposed
approaches, both using a scale-space stack and a pyramidal represen-
tation, have been compared with the results obtained when I and IG
are not propagated through the different levels of the stack/pyramid
(Tables 1 and 2 part (a)).

Figure 3(b) shows the results for the same example introduced
above but when I and IG are propagated. Note that both approaches
(with/without propagation) find the correct match but by using prop-
agation the relative values between local maximums are increased,
making easier to identify the correct one.

Upper levels of scale-space stacks were obtained by convolv-
ing the images with a Gaussian kernel of order n = {0, 1} and
σ = {1, 2}, as shown the Table 1. The experiments were con-
ducted following the next setup, in both the stack and the pyramid
cases. The window size decreases with the scale. It started with a
size of 32 × 32 and finishes with 8 × 8 (level 0); the propagation
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(a) without propagation (b) with propagation

Fig. 3. (a) Mutual information (I) and mutual with gradient information (IG) as formulated in [4]. (b) Proposed propagation of mutual
information I and mutual with gradient information IG (I: dashed line; IG: solid line).

Table 1. First three maximums by using a scale-space stack

(a) Score without propagation (results in percentages)

Level
1st. 2nd. 3rd.

I IG I IG I IG
2 37.19 50.03 12.52 11.55 7.08 5.83
1 17.30 27.58 9.61 9.95 7.10 5.11
0 4.15 12.54 3.62 7.44 3.37 5.92

(b) Score with propagation (results in percentages)

2 37.19 50.03 12.51 12.52 7.08 5.83
1 31.69 49.61 12.57 12.57 7.71 5.96
0 15.24 43.97 9.19 11.99 7.00 5.74

Table 2. First three maximums by using a pyramidal representation

(a) Score without propagation (results in percentages)

Level
1st. 2nd. 3rd.

I IG I IG I IG
2 31.29 54.04 15.86 1386 10.82 8.11
1 14.14 29.28 9.66 13.38 7.91 8.95
0 4.15 12.54 3.62 7.44 3.37 5.92

(b) Score with propagation (results in percentages)

2 31.29 54.04 15.86 1386 10.82 8.11
1 17.67 39.55 15.31 15.53 7.10 8.36
0 9.23 27.38 6.41 9.87 5.15 6.52

also follows this direction. The parameter λ controls the degree of
propagation between consecutive levels. Experiments have shown
that λ = 0.5 maximizes the scores. The quantization parameter Q is
constant (Q = 30).

I and IG showed a behavior proportional to the size of template
(Il). If it is increased then the estimation of I will be better, due
to large number of observations. Nevertheless, big windows are not
desirable for stereo matching. Therefore, our propagation scheme
is a good choice because it improves the results whereas small win-
dows (8 × 8 pixels) are used. The improvement obtained with the
scale-space stack reaches about 3.5 times at the last level, while in
the pyramidal representation it is about 2.2 times due to the down-
sampling.

The representations only have three levels in order to compare
both results. The results of pyramid using propagation are better than
without it. However, these results cannot be compared to the ones
obtained with the stack, except at level 0, due to compression of im-
ages (see Fig. 2). Notice that, each level contains less information
and the image is smaller; hence, the estimation of I is weak. The
used mutual information estimator (eq. 2) and the way to ensem-
ble the alphabets, establish a dependency between the estimation (I
value) and the number of members in the sample (template size),
which affects the performance of propagation in this representation.

Results presented in Table 1 and Table 2 show the improvements

reached when gradient information is used with mutual information,
instead of mutual information alone. On average, IG improves the
result from I about 3 times.

4. CONCLUSIONS

This paper presents a scheme for combining mutual information with
gradient information together with an evaluation of two scale-space
representations. Experimental results show the improvements in the
discriminative power as well as the viability of the proposed ap-
proach. Future work will study a mutual information estimator ro-
bust to downsampling.
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