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ABSTRACT

This paper presents a novel approach for estimating the short-

est Euclidean distance from a given point to the corresponding

implicit quadric fitting surface. It first estimates the orthog-

onal orientation to the surface from the given point; then the

shortest distance is directly estimated by intersecting the im-

plicit surface with a line passing through the given point ac-

cording to the estimated orthogonal orientation. The proposed

orthogonal distance estimation is easily obtained without in-

creasing computational complexity; hence it can be used in

error minimization surface fitting frameworks. Comparisons

of the proposed metric with previous approaches are provided

to show both improvements in CPU time as well as in the ac-

curacy of the obtained results. Surfaces fitted by using the

proposed geometric distance estimation and state of the art

metrics are presented to show the viability of the proposed

approach.

1. INTRODUCTION

Having an efficient approximation to the shortest distance be-

tween a point and the fitting surface has been an important

problem in different applications: reverse engineering [8], vi-

sualization [9], object recognition [4]. In the context of 3D

computer vision the quadric surface fitting has been an active

research topic during the last two decades [1, 7]. The appear-

ance of new sensors, which allow to obtain a large amount of

3D data in a reduced time, and the need to process all this in-

formation efficiently have opened new challenges looking for

efficient fitting approaches.

In general, fitting approaches are based on finding the set

of parameters that minimize some distance measures between

the given set of points and the fitted curve or surface. Unfor-

tunately, the minimization of the Euclidean distance from the

data points to a general curve or surface is computationally

impractical, since there is no closed form expression. Hence,

the shortest Euclidean distance has been approximated and
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different criteria have been proposed in the literature for es-

timating this residual value and judge goodness of fit (e.g.,

Algebraic distance [2], PCA-based normal vector estimation

[6]).

The current work proposes a novel technique for an ef-

ficient estimation of the shortest Euclidean distance, here-

inafter orthogonal distance, from a given point p to the cor-

responding implicit quadric fitting surface, F (b,X) = 0.

Implicit quadric are useful in the computer vision field for

representing 2D or 3D data in a compact way. The advantage

of the proposed error estimation is twofold. First, it provides

a more accurate value than current approaches. Second, it can

be efficiently computed and run in real time. The rest of the

paper is organized as follows. Section 2 describes the prob-

lem and introduces related work. The proposed technique is

presented in section 3. Section 4 gives experimental results

and comparisons.

2. RELATED WORK

Computing the orthogonal distance between a point p and an

implicit general quadric:

F (b,X) = b1x
2 + b2y

2 + b3z
2 + 2b4xy + 2b5xz (1)

+2b6yz + 2b7x + 2b8y + 2b9z + 1 = 0

can be formulated as first finding the closest point p0 on the

surface. This point corresponds to the intersection of the sur-

face with a line passing through p and orthogonal to the sur-

face at p0, −→n 0 ≡ (a0, b0, c0); thus, the orthogonal distance

can be expressed as p − p0 = α−→n 0, for some scalar α:

xp − x0

a0
=

yp − y0

b0
=

zp − z0

c0
(2)

with F (b,X) = 0. However, since −→n 0 is also unknown, the

problem requires solving a non-linear equation.

In order to overcome the previous problem—i.e., solving

a non-linear equation for every point to be fitted—different

approximations have been proposed. For instance, [3] pro-

poses to intersect the quadric surface with three lines, one
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Fig. 1. Orthogonal distance estimation between p(x,y) and a

quadric curve. (a) The shortest distance is selected, Pseudo

Geometric Distance (PGD) [3]; (b) By using an estimation of

the surface orientation (PCA in a local neighborhood) [6]. (c)
Distance estimation based on the proposed approach (i.e., by

finding p0(x,y) from the Triangle Height Intersection (THI)).
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Fig. 2. Transition from a tetrahedron height vector to a trian-

gle height vector. (a) Illustration of two surfaces with their

corresponding intersection points (planar triangular patch

(r, s, t)). (b) Angle between tetrahedron height segment and

(pt) segment, as a function of distance |pt|.

parallel to each of the X , Y , and Z axes (see illustration1 in

Fig. 1 (a)). Hence, vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) are

considered as approximations for −→n 0. For each one of these

approximations one quadratic equation with one unknown

F (x, yp, zp) = 0, F (xp, y, zp) = 0 and F (xp, yp, z) = 0
should be solved; giving rise at most six solutions (two roots

per quadratic equation), and six distances. The minimum

distance is taken as the residual value and referred as Pseudo

Geometric Distance (PGD).

A more accurate orthogonal distance estimation has been

presented in [6] by first estimating a surface normal vector for

each point p. These vectors are computed by using principal

components analysis (PCA) in a small N × N neighborhood

centered at each point. In other words, −→n p is defined as the

eigenvector of the local covariance matrix associated with the

smallest eigenvalue. A consistency step is applied to remove

outliers. In case p is an inlier, the surface is intersected with a

line passing through p and parallel to −→n p, resulting in a bet-

ter approximation for the closest point p0. A single quadratic

equation F (b,X) = 0 should be solved; from the two possi-

ble roots, two distances result and the smallest is taken as the

orthogonal distance estimation (Fig. 1 (b) shows an illustra-

tion of this technique).

1Without loss of generality, and in order to make clear its understanding,

this illustration shows the 2D case.

3. PROPOSED APPROACH

The proposed approach consists in approximating the surface

normal vector −→n 0 ≡ (a0, b0, c0), at the intersection point p0,

by means of a vector
−→
h ≡ (ah, bh, ch) parallel to the tetrahe-

dron height segment; the tetrahedron is defined by the points:

p, F (xp, y, z) = 0, F (x, yp, z) = 0 and F (x, y, zp) = 0
(see an illustration for the 2D case in Fig. 1(c)). A faster and

coarser estimation of the orthogonal distance could be easily

obtained from the tetrahedron height segment. In the particu-

lar case we are tackling in this work, since the fitted curve is

defined by an implicit quadric equation F (b,X) = 0, the in-

tersection point can be found by representing the tetrahedron

height by means of a parametric equation:

x = xp + ahu, y = yp + bhu, z = zp + chu , (3)

then, by replacing (3) in the implicit quadric expression, and

by solving that quadric equation the two values satisfying the

implicit equation are found. The nearest one correspond to the

intersection of the tetrahedron height segment and the implicit

quadric curve (i.e., p0); |p − p0| is the orthogonal distance

estimation resulting from the proposed approach (referred as

THI hereinafter).

Let r, s and t be the three intersections with a quadric

surface, which create a triangular planar patch (see Fig. 2(a)).
Vectors −→rs and

−→
rt are contained in the plane and their cross

product is orthogonal to the planar patch; in other words it is

parallel to the tetrahedron height segment
−→
h ≡ (ah, bh, ch),

which is used as an estimation of the surface normal vector−→n 0 ≡ (a0, b0, c0), at the intersection point p0.

Note that in the extreme cases, when intersections with

some of the directions (1, 0, 0), (0, 1, 0), (0, 0, 1) cannot be

found the 3D case becomes into: i) the 2D case (two inter-

sections); ii) the PGD case (only one intersection); or iii) the

point p is an outlier since none of the three directions inter-

sects the implicit quadric surface. Transitions between differ-

ent cases are smoothly reached; Fig. 2(a) shows an illustra-

tion where one of the vertices of the triangular patch (r, s,

t) moves away from current position up to the extreme—i.e.,

no intersection between vertex t and the implicit surface can

be found2; the smooth transition from the tetrahedron height

segment orientation to the triangle height segment orientation

can be appreciated in the illustration of Fig. 2(b).

4. EXPERIMENTAL RESULTS

This section provides results obtained with synthetic and real

data points. Synthetic data points are used as ground truth for

evaluating results of the proposed approach when noisy data

are considered. Real data points have been obtained with the

2These experiments have been performed by applying smooth changes in

the geometric representation of the surface, which also correspond to smooth

changes in the parameter space.
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Fig. 3. Estimated normal vectors for raw data points by using

different approaches. (a) PGD approach. (b) Based on PCA in

a local neighborhood. (c) Proposed approach (THI direction).

K2T structured light camera system at the University of South

Florida and are used for validating the proposed approach.

Synthetic Data: In this section results from 2D and 3D

synthetic data points are presented. The first illustration cor-

respond to a set of 50 noisy 2D data points, randomly dis-

tributed over a circle. Fig. 3 presents normal vectors −→n 0 es-

timated by using different approaches. An outer, and concen-

tric, circle is just depicted for highlighting these orientations.

Fig. 3 (a) shows the orientations obtained by using the PGD

criterion [3]; since the shortest distance along {(1, 0), (0, 1)}
is selected, the estimated −→n 0 is parallel to one of the axes.

Fig. 3 (b) presents normal vectors estimated by using the ap-

proach presented in [6]. Since this approach is based on a

PCA analysis in a small neighborhood centered at each point,

it is easily affected by noisy data. It can be appreciated that

some estimations are completely wrong. On the contrary, re-

sults obtained with the proposed approach are robust to noisy

data (see Fig. 3 (c)). In most of the cases estimated normal

vectors are correctly oriented towards the center of the circle.

Fig. 4(top) presents results obtained with a set of 3D data

points uniformly distributed over the surface of a sphere. An

accumulated real orthogonal distance (ROD), from the whole

set of 3D data points to an outer and concentric sphere, is

used as ground truth. Estimated distances, also accumulated

over the whole set of points, are computed by using the three

different approaches (i.e., PGD [3], PCA [6] and THI). The

experiment has been repeated by increasing the standard de-

viation of the noise added to the set of 3D points. It can be

seen that the proposed approach behaves quite similar to the

real orthogonal distance independently of the added noise. On

the contrary, as it was expected, results obtained with the PCA

based approach are easily biased when the noise standard de-

viation grows. Similar results have been obtained by using 3D

data points uniformly distributed over the surface of a cylin-

der (Fig. 4(bottom)). In this case, distances to an outer and

concentric cylinder are considered. The real orthogonal dis-

tance, accumulated through the whole set of points, is used

as ground truth. It can be appreciated that the distances esti-

mated with the proposed approach (THI) are very similar to

the real values; on the other hand values computed with the

proposed approach are not affected by noisy data.

Real Data: The objective of this section is to show the vi-

ability of the proposed approach by analyzing surfaces fitted
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Fig. 4. Accumulated error by using different approaches as a

function of noise standard deviation.

using different metrics. A simple RANSAC-based [5] fitting

approach has been used for finding the best set of quadric sur-

face parameters in each case; developing a novel fitting tech-

nique is out of the scope of current work. The prior knowl-

edge about the geometry of the surface to be fitted and a 3D

data preprocessing step are used to reduce the size of parame-

ter vector b in (1). The preprocessing step consists in rotating

and translating the set of 3D data points in order to place the

world coordinate system at the centroid of the set of points

and to orient it according to the main axis of the 3D data.

Once data have been transformed to the new coordinate sys-

tem the RANSAC-based fitting approach is used for comput-

ing the surface parameters (parameter vector3 b).

Table 1 shows the original images (left column) as well

as the patches extracted for fitting (second column) that only

contains 3D data points from a quadric surface. Surface pa-

rameters have been obtained through the RANSAC-based fit-

ting by using three different estimations of the orthogonal dis-

tance. Results are presented on columns 3 to 5 of Table 1.

The fastest results were obtained by using the PGD estima-

tion; however, as presented in the synthetic case, this distance

estimation is not accurate and could leads to a biased result.

Note that in the real data case it is not possible to judge the

goodness of obtained results since there are not ground truth

values for the surface parameters. In spite of that, it can be ap-

preciated that in most of the cases the surface parameters ob-

tained with PCA based approach are very similar to the ones

computed using the proposed approach. In other words, it

could be assumed that PGD based approach results in a more

inaccurate set of surface parameters. Finally, although the

proposed approach gives similar results to the PCA based ap-

3It is defined according to the kind of surface to be fitted—e.g., cylinder:

(b = {b2 = b3, b8, b9}).
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Table 1. Surfaces fitted by using different metrics; Rad: radius; C: center; AEr: Accumulated Error according to the used

metric; CPU time in sec.

Intensity Image 3D Data to be Fitted PGD [3] PCA [6] THI: Prop. Ap.
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proach, it should be highlighted that it runs up to eleven times

faster. Furthermore, recall that PCA based approach needs

the right tuning for the neighbor point selection.

5. CONCLUSIONS

This paper presents an efficient approach for orthogonal dis-

tance estimation to be used in the implicit quadric surface

fitting problem. It does not require any predefined adjust-

ment. It is based on an estimation of a vector orthogonal to

the surface for a given point. The intersection of a line with

the implicit surface—line passing through the given point and

parallel to the estimated vector—is defined as the orthogonal

distance estimation. Experiments on synthetic and real data

have shown the accuracy and robustness of the proposed ap-

proach. Furthermore, it is considerable faster than approaches

with similar accuracy. Although the development of a surface

fitting algorithm has not be addressed in the current paper, it

is expected that the proposed metric can be useful in a mini-

mization based context.
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