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Computer Vision Center and Computer Science Department,
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ABSTRACT

Photometric stereo aims at finding the surface normal and re-

flectance at every point of an object from a set of images ob-

tained under different lighting conditions. The obtained inten-

sity image data are stacked into a matrix that can be approxi-

mated by a low-dimensional linear subspace, under the Lam-

bertian model. The current paper proposes to use an adapta-

tion of the Alternation technique to tackle this problem when

the images contain missing data, which correspond to pixels

in shadow and saturated regions. Experimental results con-

sidering both synthetic and real images show the good perfor-

mance of the proposed Alternation-based strategy.

Index Terms— Photometric stereo, alternation tech-

nique, missing data

1. INTRODUCTION

The image of an object depends on many factors such as light-

ing conditions, viewpoint, geometry and albedo of the object.

Hence, if a general description of the object is required, it is

necessary to design a representation that capture all the image

variation caused by those factors. Then, it could be used for

object detection and recognition, for instance.

Photometric stereo aims at estimating the surface normals

and reflectance of an object by using several intensity images

obtained under different lighting conditions. The general as-

sumptions are that the projection is orthographic, the camera

and objects are fixed and the moving light source is distant

from the objects. Hence, it can be assumed that the light

shines on each point in the scene from the same angle and

with the same intensity.

The starting point (as pointed out in [1]) is that the set

of images produced by a convex Lambertian object, un-

der arbitrary lighting, can be well approximated by a low-

dimensional linear subspace of images. In [2], it is shown

that, without shadows, a Lambertian object produces a 3D

subspace of images. This linear property suggests to use

factorization techniques to model the image formation and
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obtain each of the factors that contribute to it. The intensity

of the pixels of the images are stacked into a measurement
matrix, whose rows and columns correspond to each of the

pixels and images, respectively.

One common assumption in most photometric stereo ap-

proaches is that the images do not have shadows nor saturated

regions (e.g., [3]), which correspond to points with very low

and high intensities values, respectively. This is due to the

fact that these points do not follow a Lambertian model. Al-

though if there are only a few of them the Lambertian model

is a good approximation, their presence can bias the obtained

results. Hence, some approaches propose methods to reject

them or tend to reduce their influence on the results.

Hayakawa [4] presents a photometric stereo approach for

estimating the surface normals and reflectance of objects,

which is similar to the factorization method presented in [5]

for the shape and motion estimation. This approach is based

on SVD and, in order to obtain a unique decomposition, it

uses one of the following constraints: 1) at least six known

pixels have constant or known reflectance; 2) the light source

intensity value is constant or known in at least six known

images. Hayakawa proposes a strategy to deal with shadows.

The idea is to select an initial submatrix, whose entries do

not correspond to pixels in shadow. Then, the surface normal

and reflectance of pixels in shadow are estimated by growing

a partial solution obtained from the initial submatrix. Unfor-

tunately, to find a submatrix without shadows is in general

a quite expensive task. Furthermore, the SVD has a high

computational cost when dealing with big matrices, which

are common in this application.

Epstein et al. [6] present an approach based on [4] for

learning models of the surface geometry and albedo of ob-

jects. They point out that in [4] the obtained reflection and

light directions are recovered up to a rotation. In order to

solve that ambiguity, they propose the surface integrability.

Yuille et al. [7] propose and extension of [6] in which the SVD

is applied to obtain the shape and albedo of objects under dif-

ferent unknown illuminations. They also propose a method to

locate and reject shadows. It consists of an iterative process

whose initialization is given by the SVD.

Basri et al. [1] also use the photometric stereo to recover

the shape and reflectance properties of an object. The main

advantage of this recent approach is that it allows arbitrary
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lightings, including any combination of point sources and dif-

fuse lightings. They use spherical harmonics [8], which form

an orthonormal basis for describing functions on the surface

of a sphere. Basri et al. propose to remove unreliable pix-

els, such as saturated pixels, and to fill in the missing data by

using Wiberg’s algorithm [9].

In this paper, the Alternation technique [10] is proposed

to decompose the measurement matrix, which contains the in-

tensity images, into the surface and light source matrices. The

novelty of our proposal is that shadows and saturated regions

are considered as missing data. Thus, the results do not de-

pend on those pixels, which in general influence the results.

This paper is structured as follows. First of all, the formula-

tion used along the paper is introduced. Then, the Alterna-

tion technique adapted to the photometric stereo is presented.

Experimental results with both synthetic and real images are

given. Finally, concluding remarks are summarized.

2. FORMULATION

A measurement matrix I contains the grey-level intensity im-

age data at p pixels through f frames in which only the light

source is moving. In particular, the kth-row of I corresponds

to the intensities of the kth-pixel in every image. At the same

time, the jth-column of I corresponds to the intensities of all

the pixels of the jth-frame. Hence, the matrix I is defined as:

Ip×f =

⎡
⎢⎣

i11 . . . i1f

...
...

ip1 . . . ipf

⎤
⎥⎦ (1)

The space of images of the object obtained by varying the

light source direction spans a three dimensional space [2], if

there are not shadows or saturated regions. Therefore, it can

be assumed that the rank of I is 3. Assuming a Lambertian

reflectance model, this matrix can be factorized as:

I = RNMT (2)

where

Rp×p =

⎡
⎢⎣

r1 0
. . .

0 rp

⎤
⎥⎦ (3)

is the surface reflectance matrix (r represents the surface re-

flectance at each pixel),

Np×3 =
[

n1 . . . np

]t =

⎡
⎢⎣

n1x n1y n1z

...
...

...

npx npy npz

⎤
⎥⎦ (4)

is the surface normal matrix (n represents the surface normal

at each pixel),

M3×f =
[

m1 . . . mf

]
=

⎡
⎣

mx1 . . . mxf

my1 . . . myf

mz1 . . . mzf

⎤
⎦ (5)

is the light-source direction matrix (m represents the light-

source direction at each frame), and

Tf×f =

⎡
⎢⎣

t1 0
. . .

0 tf

⎤
⎥⎦ (6)

is the light-source intensity matrix (t represents the light-

source intensity at each frame).

Using the above definitions, the surface matrix S and the

light-source matrix L are defined as follows:

Sp×3 =
[

s1 . . . sp

]t =

⎡
⎢⎣

s1x s1y s1z

...
...

...

spx spy spz

⎤
⎥⎦ = RN (7)

L3×f =
[

l1 . . . lf
]t =

⎡
⎣

lx1 . . . lxf

ly1 . . . lyf

lz1 . . . lzf

⎤
⎦ = MT (8)

Hence, the measurement matrix can be decomposed as:

I = SL (9)

Therefore, the surface matrix S and the light-source ma-

trix L can be recovered from intensity images obtained under

varying illumination. Furthermore, synthetic images can be

generated by considering arbitrarily light positions and sub-

stituting them to the expression (9).

3. ADAPTED ALTERNATION TO THE
PHOTOMETRIC STEREO PROBLEM

An adaptation of Alternation [10] is proposed to factorize the

matrix I , instead of using SVD. Entries of the matrix cor-

responding to pixels in shadow and saturated regions (also

denoted as specularties) are considered as missing data. The

algorithm is summarized below.

Algorithm:

1. Set a lower and an upper threshold to define the shad-

ows and saturated regions, respectively. The lower

threshold depends on the intensity values in each set of

images, while the upper threshold is, in general, 255.

2. Consider the entries corresponding to shadows and sat-

urated regions as missing data in I .

3. Apply the Alternation technique to I . The algorithm

starts with an initial random p × 3 matrix S0 (analo-

gously with a 3 × f random L0) and repeats the next

two steps until the product SkLk converges to I:

• Compute L1: Lk = (St
k−1Sk−1)−1(St

k−1I)

• Compute S1: Sk = ILt
k(LkLt

k)−1

Solution: S contains the surface normals and reflectance,

L contains the light source direction and intensities and the

product SL is the best rank-3 approximation to I .

1These products are computed only considering known entries in I .
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However, as in the SVD case [4], the obtained decompo-

sition is not unique, since any invertible matrix Q with size

3 × 3 gives the following valid decomposition:

I = SL = ŜQQ−1L̂ (10)

Therefore, at the end of the algorithm, one of the con-

straints proposed in [4] is used to determinate the matrix Q:

1. The relative value of the surface reflectance is constant

or known in at least six pixels. The matrix Q can be

computed with the following system of p equations:

ŝkQQtŝt
k = 1, k = 1, · · · , p (11)

where ŝk is the kth-vector of Ŝ.

2. The relative value of the light-source intensity is con-

stant or known in at least six frames. Here Q can be

obtained by solving the following system:

l̂tkQQt l̂k = 1, k = 1, · · · , f (12)

where l̂k is the kth-vector of L̂.

If the value of the reflectance or the value of the light in-

tensity is known, it is substituted to the corresponding above

equation. Actually, if the value is not known, the reflectance

and the light intensity are recovered only up to scale. In our

experiments, the second constraint is used and a total of f
equations (the number of available images) are considered.

4. EXPERIMENTAL RESULTS

The aim at this Section is to show that results are improved

when pixels in shadow and saturated regions are considered

as missing entries in I . Hence, results obtained taking the full

image intensity matrix are compared with the ones obtained

when those particular entries are considered as missing data.

4.1. Synthetic Images

In this first experiment, the POV-Ray software is used to

generate images that contain a sphere. The light source di-

rections are generated by simulating a trajectory on a sphere

and avoiding positions of the light source behind the ob-

ject. A total of 66 images with a size of 120×120 pix-

els are generated, given rise to a measurement matrix of

14,400×66 elements. Since only the entries corresponding

to non-background pixels are considered, the final resulting

matrix contains 7,499×66 elements.

Fig. 1 shows the recovered factors in the case of non-

missing data. It can be seen in Fig. 1 (a) that the reflectance is

constant in all the points of the surface. Fig. 1 (b), Fig. 1 (c)

and Fig. 1 (d) show each of the coordinates of the recovered

surface normals. Notice that there are points on the bound-

aries of the visible surface in which the normal values are not

properly recovered (see enlargements on Fig. 1 (b)). This is

(a) R (b) Nx (c) Ny (d) Nz

Fig. 1. Synthetic images; (a) reflectance; (b), (c) and (d) co-

ordinates of the surface normals.

due to the fact that these points correspond to pixels in shadow

in several images.

In order to correct the wrongly recovered values in the

normals, shadows are considered as missing data. Hence, they

are not used for computing the factors in the third step of the

adapted-Alternation algorithm (Section 3). Concretely, pixels

whose intensity is lower than 120 are considered as missing

data. With such a high threshold, a percentage of missing data

of 57% is obtained. Fig. 2 shows the results corresponding to

this missing data case. Here, the normal components do not

present incorrect values in the boundaries.

(a) R (b) Nx (c) Ny (d) Nz

Fig. 2. Synthetic images, 57% of missing data; (a) re-

flectance; (b), (c) and (d) coordinates of the surface normals.

4.2. Real Images

Images from the Yale data base (http://cvc.yale.edu) are used.

In particular, a scene containing a ball is presented here.

Images are captured using a purpose-built illumination rig,

which is fitted with 64 computer controlled strobes. The

extreme cases, in which almost all the pixels of the image

are in shadow, are not considered in this experiment, only 49

images are taken to generate the measurement matrix.

The images contain many regions of specular reflec-

tion, that is saturated pixels with an intensity of 255 (see

Fig. 4 (top)). The images have a size of 294×294 pixels,

which give a measurement matrix of 66,921 rows and 49

columns. If the background pixels were considered, the ma-

trix would have 86,436 rows. Fig. 3 shows the reflectance

and the coordinates of the surface normals obtained taking all

the intensity values.

Fig. 4 gives a comparison between the initial images (top)

and the recovered ones with the product of the obtained fac-

tors (bottom). It can be seen that the saturated regions keep

quite saturated in the recovered images.

If the saturated pixels (those for which the image intensity

is equal to 255) are considered as missing data, the measure-
ment matrix I has a percentage of missing data of about 28%.
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(a) R (b) Nx (c) Ny (d) Nz

Fig. 3. Real images; (a) reflectance; (b), (c) and (d) coordi-

nates of the surface normals.

Fig. 4. (top) A set of the original images of the ball; (bot-

tom) images recovered by the product of the recovered fac-

tors.

Fig. 5 shows the results obtained in this case. It can be seen

that the reflectance (Fig. 5 (a)) is considerably less saturated

than the recovered one when considering 100% of data.

(a) R (b) Nx (c) Ny (d) Nz

Fig. 5. Real images, 28% of missing data; (a) reflectance; (b),

(c) and (d) coordinates of the surface normals.

Fig. 6 shows some initial images (top) and the recovered

ones (bottom) in the case of missing data. Notice that the

recovered images are not as saturated as the obtained in the

full data case (Fig. 4 (bottom)).

5. CONCLUSION

This paper proposes the use of the Alternation technique, to-

gether with the corresponding adaptation, to tackle the photo-

metric stereo problem. The goal is to obtain the normals and

reflectance surface of an object from a given set of images

obtained under varying illumination. Entries of the measure-

ment matrix that correspond to saturated points or pixels in

shadow in the image are considered as missing data. Exper-

imental results with synthetic and real images show the via-

bility of the proposed adapted Alternation approach. Further-

more, results are improved when shadows and specularities

are considered as missing data.
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