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Abstract

This paper presents a novel formulation, which derives
in a smooth minimization problem, to tackle the rigid reg-
istration between a given point set and a model set. Unlike
most of the existing works, which are based on minimizing
a point-wise correspondence term, we propose to describe
the model set by means of an implicit representation. It al-
lows a new definition of the registration error, which works
beyond the point level representation. Moreover, it could
be used in a gradient-based optimization framework. The
proposed approach consists of two stages. Firstly, a novel
formulation is proposed that relates the registration param-
eters with the distance between the model and data set. Sec-
ondly, the registration parameters are obtained by means of
the Levengberg-Marquardt algorithm. Experimental results
and comparisons with state of the art show the validity of
the proposed framework.

1. Introduction

Registration problem has been largely studied in the
computer vision community since the last two decades (e.g.,
[5], [8], [16], [22], [7]). It aims at finding the best trans-
formation that places both the given data set and its corre-
sponding model set into the same reference system as close
as possible. The different approaches proposed in the lit-
erature can be broadly classified into two categories, de-
pending on whether an initial information is required (fine
registration) or not (coarse registration); see [18] for a de-
tailed survey. The proposed approach lies within the fine
rigid registration category.
Typically, the fine registration process consists of iterat-

ing the following two stages. Firstly, the correspondence
between every point from the current data set and the model
set should be found. These correspondences are used to de-
fine the residual error of the registration. Secondly, the best

set of parameters that minimizes the sum of these residu-
als should be found. These two stages are iteratively ap-
plied till convergence is reached. The Iterative Closest Point
(ICP)—originally introduced by [5] and [8]—is one of the
most widely used registration techniques using this two-
stage scheme. Since then, several variations and improve-
ments have been proposed in order to increase the efficiency
and robustness of the method (e.g., [12], [19], [26], [13]).
It should be noticed that the correspondence search in these
approaches makes the whole scheme as a discrete evolution.

In order to avoid the correspondence search in the first
stage, different techniques have been proposed in the lit-
erature: i) Implicit polynomials have been used in [20] to
represent both the data set and model set. Then an accurate
pose estimation is computed through constructing two co-
variants. ii) Probabilistic representations have been used to
describe both data set and model set (e.g. [23], [14], [7]).
iii) In [10] the point-wise problem is avoided by using a
distance field of the model set; the value and behavior of
this distance field is computed in a discrete domain. iv) In
[15] the behavior of the distance field is approximated ana-
lytically based on the curvature information. v) An implicit
polynomial is used in [24] to fit the distance field, which
later defines a gradient field leading the data set towards
that model set.

The current paper proposes a novel formulation differ-
ent to the point-wise based correspondence approaches. It
is based on an implicit representation of the model set that
allows to define a continuous and smooth distance function
for the registration. Hence, it is independent of point den-
sities and robust to noise and missing data. The main con-
tribution of the proposed approach is the novel way of dis-
tance definition, which avoids correspondence search of the
classical registration algorithms. Moreover it is differen-
tiable with respect to the registration parameters and allows
solving the registration problem through a gradient based
optimization algorithm.
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Figure 1. (left) Initial positions of data and model sets. (middle) Data points and 7th. degree IP describing the model set. (right) Result
from the proposed approach. In (left) and (right) sets of points are represented through triangular meshes to highlight details.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related works together with their advan-
tages and disadvantages. Section 3 presents the proposed
registration approach based on a non-linear minimization of
the distance between the given data set and an implicit rep-
resentation of the model. Experimental results and compar-
isons with state of the art are presented in Section 4. Finally,
conclusions and future work are given in Section 5.

2. Motivations and Related Work

This section describes major and recent contributions in
the correspondence free registration category. Most of these
methods use different representations to model the regis-
tration error. Probabilistic approaches represent each given
set by a probabilistic model like multivariate t-distributions
[23] or mixture of Gaussians [14, 9]; hence, the registration
problem becomes a problem of aligning the two mixtures.
In [14] a closed-form expression for the L2 distance be-
tween two Gaussian mixtures is proposed. Similarly, in [7]
a smooth distance function based on the mixture of Gaus-
sians is proposed. The modelled distance function is used
in the quasi-Newton algorithm to find the optimal rigid pa-
rameters.
Probabilistic approaches based on mixture models are

highly dependent on the number of mixtures used for mod-
elling the sets. This problem is generally solved by assum-
ing a user defined number of mixtures or as many as the
number of points. The former scheme needs the points to
be clustered, while the latter one results in a very expen-
sive optimization problem that cannot handle large data sets
or could get trapped in local minimum when complex sets
are considered. Generally speaking, although these meth-
ods do not require any correspondence search, all points in
the model set are implicitly considered as a potential corre-
spondence for each single point in the given data set.
On the contrary to the previous approaches, [24] pro-

poses a fast registration method based on solving an energy

minimization problem derived from an implicit polynomial
(IP) fitted to the given model set [25]. This IP is used to
define a gradient flow that drives the data set to the model
set without using point-wise correspondences. The energy
functional is minimized by means of a heuristic two step
process. Firstly, every point in the given data set moves
freely along the gradient vectors derived from the IP. Sec-
ondly, the outcome of the first step is used to define a single
transformation that represents this movement in a rigid way.
These two steps are repeated alternately until convergence
is reached. The weak point of this approach is the first step
that lets the points move independently in the proposed gra-
dient flow. Furthermore, the proposed gradient flow is not
precise, specially close to the boundaries.
The approach presented in [10] overcomes the non-

differentiable nature of ICP by using a derivable distance
transform—Chamfer distance. The error function derived
from that distance field is a smooth function, and its deriva-
tives can be analytically computed; hence it can be mini-
mized through the Levenberg-Marquardt algorithm (LMA)
to find the optimal registration parameters. The main disad-
vantage of [10] is the precision dependency on the grid res-
olution, where the Chamfer distance transform and discrete
derivatives are evaluated. Hence, this technique cannot be
directly applied when the point set is sparse or unorganized.
The distance field used in [10] is a discrete field and

its derivatives used in LMA are not precise enough. In
[15] the authors present a local quadratic approximation of
the distance function based on the curvature information.
These local approximations define the distance field of the
model points, and reformulate the registration problem as
an optimization problem which can be solved by Newton’s
method. Unfortunately, this method needs curvature infor-
mation of the point set to find each local approximation,
hence it is computationally expensive and sensitive to noise.
In this work we use implicit representations to reformu-

late the point-to-point registration as a point-to-model prob-
lem. Firstly, the model set is described with an IP, and then
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the approximated distance between the data set and the fit-
ted polynomial is minimized to find the best rigid transfor-
mation. Figure 1(middle) shows a seventh degree IP that is
considered instead of the model set. It should be mentioned
that the IP is just used as an interface to tackle the registra-
tion problem. For instance, in the extreme case, when the
data set P is a rigid transformation of the model set Q and
fc is the best polynomial fitting the model set, then it could
be proved that:

minR,tDist(RP+ t, fc) = Dist(Q, fc),

where Dist refers to the orthogonal distance of a set of
points to the implicit polynomial; and [R, t] refers to the
rotation and translation of the rigid transform.

3. Proposed Approach

The proposed approach consists of two main steps. The
first step formulates the registration error based on the ap-
proximated distance between the current data set and the
implicit function used for representing the model set. This
formulation relates the error function with the registration
parameters. The second step finds the optimal rigid parame-
ters that minimize the proposed registration error through its
gradient information. Before detailing the aforementioned
two steps IP fitting is introduced, which is used to describe
the model set. It should be noticed that the proposed formu-
lation is valid for any implicit representation (e.g. implicit
RBF and B-Splines).

3.1. Model Representation

This section briefly describes the algorithm used for find-
ing the implicit polynomial that fits the model set. The 3L
algorithm [6] has been chosen due to its simplicity and ro-
bustness; other algebraic or geometric fitting approaches
could be adopted since the proposed distance formulation
is independent of the algorithm used for fitting the model.
Finding the best IP representation is out of the scope of the
current paper and several approaches can be found in the
literature (e.g., [3], [4], [6], [17], [21], [25]).
Without loss of generality, lets consider the 2D case,

where an implicit polynomial describes a set of points in
the plane fulfilling this equation:

fc(x, y) =
∑

(i+j)�d

{i,j}�0

ci,jx
iyj = 0, (1)

which could be represented in the vector form:

fc(x) = mTc = 0, (2)

where m is the column vector of monomials and c is the
polynomial coefficient vector; the fitting problem consists

in first defining a criterion—or residual error—to measure
the distance between the zero set and the given data set, and
then minimizing this criterion to find the best coefficient
vector c.
The simplest and straightforward criterion could be the

sum of squared IP values at the given data points (i.e.∑
i fc(xi, yi)

2). The parameters can be easily obtained by
minimizing this criterion, but there is not a clear geometric
interpretation and the least square solution for this problem
could be very unstable.
To address the two problems mentioned above, the au-

thors in [6] have proposed the 3L algorithm, which consists
in generating two additional level sets: Γ−δ and Γ+δ from
the original data set Γ0. These two additional data sets are
generated so that one is internal and the other is external.
These sets are placed at a distance±δ from the original data
along a direction that is locally perpendicular to the given
data set. In the current implementation a principal com-
ponents analysis (PCA) based approach, in a local neigh-
borhood for every point, has been used for estimating this
direction. Hence, the 3L algorithm incorporates a control
for a local continuity resulting in a more stable solution.
The 3L fitting algorithm is then formalized as a linear

least squares explicit polynomial fitting problem. Consid-
ering the three level sets: {Γ−δ,Γ0,Γ+δ} the equation (2)
is now defined by using a block matrix M3L and a block
column vector b:

M3L =

⎡
⎣ MΓ−δ

MΓ0

MΓ+δ

⎤
⎦ ,b =

⎡
⎣ −ε

0
+ε

⎤
⎦ , (3)

whereMΓ0
,MΓ+δ

,MΓ−δ
are matrices of monomials cal-

culated in the original, inner and outer set respectively; ±ε
are the corresponding expected values in the inner and outer
level sets. Then, the least squares solution for c is obtained:

c = M†
3Lb = (MT

3LM3L)
−1MT

3Lb, (4)

whereM†
3L denotes the pseudoinverse ofM3L.

3.2. Distance Formulation

The registration process seeks for the best transformation
parameter Θ which contains rotation R = Rθ and transla-
tion t = [tx, ty]

T in rigid case. The optimal parameter
moves the data set P = {pi}N1 , in a rigid way, as close as
possible to the model fc(x):

Θ̂ = argminΘ

(
N∑
i=1

Dist2(Rpi + t, fc)

)
, (5)

for this purpose, the distance function, Dist, between the
data set and the model should be approximated. In the cur-
rent work, the estimation of the orthogonal distance pro-
posed in [21] is used. This approximation is based on the
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first order Taylor expansion of the distance function. It has
some interesting properties including: i) independence of
the zero set representation; and ii) invariance to rigid body
transformation. It is computed through normalizing the al-
gebraic distance by the gradient norm:

Dist(p, fc) ≈ |fc(p)|
||∇fc(p)|| , (6)

using this approximation in (5) the registration parameters
can be found by minimizing the following function:

DistΘ =

N∑
i=1

(
fc(Rpi + t)

‖ ∇fc(Rpi + t) ‖
)2

(7)

=

N∑
i=1

(wifc(Rpi + t))2 =

N∑
i=1

d2i ,

where:
di = wifc(Rpi + t), (8)

wi = 1/‖ ∇fc(Rpi + t) ‖,

show the distance of each item and the weight to approxi-
mate this distance. Thus the point-to-point registration will
be done in a higher level using a curve or surface as an in-
terface. It will provide a rich structure as well as many ad-
vantages like robustness to noise and missing data.

3.3. Distance Optimization

The distance presented above provides a correspondence
free formulation for the registration problem, which is di-
rectly related to rigid parameters. This relation could
be exploited in many optimization algorithms. Here we
use gradient based algorithms like gradient descent and
Levenberg−Marquardt algorithm (LMA). The gradient in-
formation shows the sensitivity of distance with respect to
rigid parameters as illustrated in Fig. 2.
LMA is a well-known technique in non-linear optimiza-

tion [11], which is particularly proposed for functions in
the form of sum of squared residuals as the case in (7).
This method proposes a tradeoff between two well known
methods in nonlinear optimization: the Gauss−Newton al-
gorithm and the gradient descent algorithm. In order to han-
dle LMA, the value of the function (7) and its partial deriva-
tives, which are expressed in a Jacobianmatrix J , should be
provided. Since LMA uses the gradient information of the
objective function, the first order distance approximation in
(7) captures this information; hence, better approximations
would not benefit the result of LMA. It should be mentioned
that the derivatives of (7) must be calculated with respect
to the parameters Θ = [θ tx ty]

T, where θ, tx and ty
capture the three degrees of freedom of the rigid registra-
tion. Hence, the first column of the Jacobian matrix can be
computed as follow:

Figure 2. (left) Sensitivity of the distance with respect to small
changes in rotation. (right) Sensitivity of the distance with re-
spect to the translation along y axis.

J(i, 1) =
∂di
∂θ

= (∂wi/∂θ)fc(Rpi+t)+wi
∂fc(Rpi + t)

∂θ
,

(9)
since the implicit function fc is a smooth function, wi could
be considered as a constant weight, then the first term could
be ignored:

J(i, 1) = wi(R
′
θpi.∇fc(Rpi + t)), (10)

where R′
θ is the derivative of the rotation matrix w.r.t. the

rotation angle, and∇fc is the gradient with respect to (x, y)
components. Similarly, other columns of the Jacobian ma-
trix can be calculated as:

J(i, 2) =
∂di
∂tx

= wi
∂

∂x
fc(Rpi + t), (11)

J(i, 3) =
∂di
∂ty

= wi
∂

∂y
fc(Rpi + t).

For the 3D case the Jacobian matrix includes six columns
corresponding to three rotation and three translation param-
eters. As a general formula each entry of this matrix could
be computed as:

J(i, j) = wi

(
∂

∂Θj
(Rpi + t)

)
.∇f(Rpi + t), (12)

whereΘj is the jth parameter ofΘ = [θ, φ, ψ, tx, ty, tz].
Having estimated the proposed distance (7) and its Jaco-

bian matrix through (9), (10) and (11) it is easy to perform
LMA in order to refine the rigid parametersΘ:

Θk+1 = Θk + β�Θ,

(JTJ + λdiag(JTJ))�Θ = JTD, (13)

where β is the refinement step; diag(JTJ) is the diago-
nal matrix containing the elements of (JTJ); �Θ repre-
sents the refinement vector for the rigid parameters; λ is
the damping parameter in LMA; and the vector D is a col-
umn vector containing Dist(Rpi + t, fc), R and t are the
current rotation and translation respectively. In the current
implementation they are initialized as θ = 0, tx = 0 and
ty = 0; more evolved initializations, such as using simple
SVD based techniques, could be used since we are tackling
the rigid registration case. Parameter refinement (13) must
be repeated till convergence is reached.
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Figure 3. Initial positions of data sets and model sets for noisy
(top) and partial overlap (bottom) examples registered with the
different approaches.

4. Experimental Results and Comparisons

The proposed approach has been evaluated using differ-
ent data sets and model sets. Additionally four techniques
(i.e., [14], [10], [24] and [15]) from the state of the art, to-
gether with the classical ICP [5], have been implemented
for a comparative study in the 2D and 3D cases. Each tech-
niques iterates till one of the stopping criteria is reached:
maximum number of iterations (#Iter=30) or relative reg-
istration error smaller than a given threshold. The relative
registration error is defined as: ε = |Et −Et−1|/Et, where
Et refers to the error between the model and data set at iter-
ation t. In our implementation (ε < 0.001) has been used.
On the contrary to the relative registration error, which is

an internal measure, an Accumulated Residual Error (ARE)
is used during the comparisons. It is computed by measur-
ing the accumulated error, in a point-wise manner, from the
data set to a reference set. This reference set corresponds
to a highly detailed description of the model set. It contains
the model set and on average is defined by a set of points ten
times larger than the model set. Each residual error is com-
puted by finding the nearest point in between the registered
data set and the reference set.
Figure 3 shows initial configurations for four different

data and model sets. The first row corresponds to closed
contours with a full overlap. Data sets have been obtained
by rotating and translating the corresponding model set, and
by adding Gaussian noise to study the robustness of all the
techniques. Accuracy and number of iterations are provided
in Table 1. It should be highlighted that the proposed ap-
proach converges in all the cases and most of the time with
the smallest error and lowest number of iterations, in spite
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Figure 4. Model sets and data sets containing different density of
points. (left) Initial configurations. (right) Final results from the
proposed approach.

of the noise in the data set. In these examples IPs of de-
gree six have been used for fitting the model sets. The IP
degree could be automatically determined through the algo-
rithm in [25], which is based on the QR decomposition of
the monomial matrix. Figure 3 (bottom) presents two ex-
amples where data set partially overlaps the corresponding
model set; data and model sets correspond to uniform sam-
pling of different boundaries. Model sets have been fitted
by sixth degree IPs in both cases. Both of them have been
registered using the proposed technique and the five afore-
mentioned ones; the obtained registration accuracy is given
in the third and fourth rows of Table 1, as well as the number
of iterations when one of the stopping criteria is reached.
Figure 4 presents challenging situations where model

sets and data sets contain different densities of points. Fig.
4(left) shows the initial configurations while Fig. 4(right)
depicts the results obtained by using the proposed approach.
Quantitative results from these two examples are presented
in Table 1. The challenge in these examples lie on the non-
existence of any point to point correspondence, although
both clouds of points correspond to the same contour. The
proposed approach, since the model set is represented by a
unified IP, is robust in this kind of situations.
In addition to 2D cases presented above, 3D real objects

from public data sets ([1] and [2]) have been registered with
the proposed approach and compared with state of the art
techniques. The illustration presented in Fig. 1 corresponds
to a data set defined by 811 points. The model set con-
tains 926 points and is represented by means of a seventh
degree IP. The result obtained with the proposed approach
is shown in Fig. 1(right). Quantitative information about
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Table 1. Comparisons of registration results for 2D cases (ICP: Iterative Closest Point; GMM: Gaussian Mixture Models; DT: Distance
Transform; GF: Gradient Flow; DA: Distance Approximation; PA: Proposed Approach).

ICP [5] GMM [14] DT [10] GF [24] DA [15] PA

Figure ARE #Iter ARE #Iter ARE #Iter ARE #Iter ARE #Iter ARE #Iter

Fig. 3(top-left) 1.62 13 2.32 13 1.65 25 1.64 27 1.65 11 1.59 4
Fig. 3(top-right) 1.41 10 1.34 7 1.42 28 1.42 15 1.40 9 1.32 6
Fig. 3(bot.-left) 0.91 7 5.11 10 4.00 30 0.98 16 0.92 10 0.53 9
Fig. 3(bot.-right) 0.52 13 1.75 18 0.20 27 0.29 20 0.35 17 0.18 15
Fig. 4(top) 0.26 14 0.89 10 0.39 29 0.48 12 0.42 13 0.19 11
Fig. 4(bottom) 1.54 16 2.48 13 0.57 30 1.92 28 1.22 12 0.34 13

Figure 5. Real data sets (from [1] and [2]) registered with the proposed approach and state of the art techniques. (left) Initial set up of the
given data and model sets represented by means of triangular meshes to highlight details. (middle) IPs representing model sets and data
points. (right) Results of the proposed registration approach represented through triangular meshes to make easier a visual evaluation.

the registration process, as well as comparisons with other
approaches are provided in Table 2; the stopping criteria
considered in Table 1 is also used here.

Figure 5 presents three additional experimental results
using 3D real data sets; Figure 5(left) shows initial po-
sition of data and model sets both represented by means of
triangular meshes to highlight the details. Figure 5(middle)
depicts IPs describing model sets together with the points of
their corresponding data sets. A seventh degree IP is used
in the (top) row to represent the 745 points of the model

set, while the data set contains 609 points. A fifth degree
IP is used in the (middle) row, in this case the data set
contains 625 points while the model set is defined by 639
points. Finally, a sixth degree IP is used to describe the
817 points of the model of the example presented in the
(bottom) row; in this case the data set contains 724 points.
Figure 5(right) presents the registration obtained with the
proposed approach. Statistics about their registration pro-
cess and comparisons with state of the art techniques are
presented in Table 2.
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Figure 6. Partial overlap cases. (left) Initial set up of data sets and model sets to be registered. (middle) IPs representing model sets and
data points from the data sets. (right) Results from the proposed approach.

Table 2. Comparisons of registration results for 3D cases (ICP: Iterative Closest Point; GMM: Gaussian Mixture Models; DT: Distance
Transform; GF: Gradient Flow; DA: Distance Approximation; PA: Proposed Approach).

ICP [5] GMM [14] DT [10] GF [24] DA [15] PA

Figure ARE #Iter ARE #Iter ARE #Iter ARE #Iter ARE #Iter ARE #Iter

Fig. 1 77.19 20 147.19 30 85.05 14 75.71 26 77.32 13 75.72 10
Fig. 5(top) 63.69 16 112.55 30 63.71 6 61.61 11 64.14 14 61.52 8
Fig. 5(middle) 53.45 26 108.21 30 52.70 9 42.39 29 53.90 15 42.75 10
Fig. 5(bottom) 49.25 24 124.58 30 53.15 15 46.49 28 48.14 18 46.09 13
Fig. 6(top) 456.64 30 139.77 30 109.29 30 1364.6 30 146.54 30 7.40 27
Fig. 6(bottom) 42.20 30 185.28 30 36.09 30 32.01 30 47.80 30 29.30 30

Finally, two cases where model sets and data sets are
partially overlapped are presented in Fig. 6. The (top) row
shows a simple example where the data set (860 points) and
model set (835 points) are picked from the same ellipsoid,
which is described by a second degree IP in the presented
approach. These two sets are partially overlapped (about
40%) as shown in the last column. Despite the simplicity
of the problem, none of the techniques presented in Table
2, except our approach, converge to the right configuration.
All these registration techniques are trapped in a local min-
imum, while our approach exploits the extrapolation pro-
vided by the fitted surface. The (bottom) row presents an-
other illustration of partial overlap. In this case, although
all the techniques have similar behavior, the proposed ap-
proach has the smallest ARE.

The evolution of ARE for registering Fig. 5(bottom) is
illustrated in Fig. 7. It can be appreciated that the proposed
approach has the smallest ARE and the fastest convergence.
Although GF [24] reaches the same optimal ARE its con-
vergence is slower; the oscillation in DT [10] is due to the
discrete approximation of the distance field, which is not the
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Figure 7. Evolution of ARE of different registration algorithms
along 30 iterations.

case of the proposed approach that has a smooth behavior.

5. Conclusions and Future Work

In this paper a novel accurate registration distance is pre-
sented, which is based on a correspondence free formula-
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tion. Additionally, its continuous nature allows the use of
gradient based optimization frameworks. Experimental re-
sults and comparisons show both fast convergence and ro-
bustness in challenging situations (e.g., noisy data; partial
overlap between data set and its corresponding model set;
different densities). As a future work the proposed registra-
tion error will be extended for more general implicit repre-
sentations in a non-rigid deformation space. Furthermore,
since the proposed formulation is independent of the fitting,
a coarse to fine representation would be explored to avoid
local minima.
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