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Abstract 

This paper presents an eficient algorithm for  generat- 
ing adaptive triangular meshes from dense range images. 
The proposed technique consists of two stages. First, a 
quadrilateral mesh is generated from the given range 
image. The points of this mesh adapt to the surface 
shapes represented in the range image by grouping in 
areas of high curvature and dispersing in low-variation 
regions. The second stage splits each quadrilateral cell 
obtained before into two triangles. Between the two possi- 
ble pips, it is chosen the one whose diagonal’s direction 
is closest to the orientation of the discontinuities present 
in that cell. Both stages avoid costly iterative optimiza- 
tion techniques. Results with real range images are 
presented. They show low CPU times and accurate trian- 
gular approximations of the given images. 

1. Introduction 

Range images are gaining popularity in computer 
vision since allow the efficient acquisition of 3D informa- 
tion. A range image is a two-dimensional array of pixels. 
Each pixel represents the distance from a point that lies 
on the surface of a 3D object to a virtual plane referred to 
the range sensor utilized to acquire the image. 

The processing associated with range images can be 
significantly reduced by working with data representa- 
tions able to keep the same shapes defined by the range 
images but with fewer data points. Triangular meshes are 
such a data representation since can efficiently adapt to 
intricate shapes. Then, further processing algorithms 
(e.g., segmentation, integration, recognition) can directly 

work on triangular meshes obtained from range images 
performing more efficiently. For instance, [ 11 presents a 
fast technique for segmenting range images approximated 
by triangular meshes. 

Besides the speed-up of further processing algorithms, 
triangular meshes are a convenient representation in order 
to integrate the surfaces described by the range image in a 
world model [2] or to include them in CAD packages. 

Different techniques have been proposed for the 
approximation of dense range images with triangular 
meshes (e.g., [5][6]). However they are based on costly 
iterative optimization algorithms that take into account all 
pixels of the original range image. This may make their 
application to systems with real-time constraints difficult. 

Trying to overcome that efficiency problem, [3] pre- 
sents a fast algorithm for generating triangular meshes 
from range images avoiding optimization techniques. 
However, the randomized nature of the previous tech- 
nique produces two effects that may be inconvenient for 
some applications. First, the number of selected points 
and triangles cannot be specified a priori. Second, the 
obtained meshes tend to be quite irregular and it is also 
frequent to find degenerated triangles. 

This paper presents a non-randomized technique to 
obtain triangular meshes from range images with no opti- 
mization. Since a deterministic algorithm is applied, the 
number of points and triangles can be specified a priori. 
Moreover, triangle shapes tend to vary more gently by 
construction. Obviously, these new requirements lead to a 
certain time penalty with respect to the simpler random- 
ized technique. However, the proposed method is still 
very efficient since avoids iterative optimization and it is 
inherently parallel. 

This paper is organized as follows. The proposed tech- 
nique is described in section 2. Section presents 
experimental results with real range images. Finally, con- 
clusions and further improvements are given in section 4. 
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supported by the Spanish Agency for International Cooperation and 
the National University of La Pampa (Argentina). 
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2. Non-randomized adaptive triangulation of 
range images 

Adaptive triangular meshes are generated from range 
images in two stages. In the first stage, an adaptive quad- 
rilateral mesh approximating the original range image is 
obtained with no optimization. 

The second stage divides each previously obtained 
quadrilateral cell into two triangles by applying a new 
technique for choosing the diagonal (flip) that best agrees 
with the discontinuities present in that cell. Both stages 
are described below. 

2.1. Generation of adaptive quadrilateral 
meshes from range images 

This section describes a technique for obtaining quadri- 
lateral meshes that adapt to the shape of the surfaces 
contained in a given range image. A complete mathemati- 
cal description can be found in [4]. 

Let R ( r ,  c) be a range image with R rows and C col- 
umns, r E [O, R ), c E [0, C ), where each valid pair 
( r ,  c )  denotes a pixel located at row r and column c. Pix- 
els belonging to the background of the image are given a 
constant value p. 

The generation of an adaptive quadrilateral mesh con- 
sists of three steps. First, an estimation of curvature is 
computed for every pixel of the given range image. Sec- 
ond, the range image is tessellated into a user-defined 
number of tiles that overlap along one line of pixels. 
Finally, an adaptive quadrilateral mesh is separately com- 
puted for each tile based on the range image and its 
curvature estimation. These steps are described next. 

2.1.1. Curvature estimation 

Let R ( r ,  c )  be the input range image. The objective of 
this step is the generation of a curvature image K (r, c) 
that gives, for every pixel, an estimation of its curvature. 
First horizontal K:, and vertical Krc curvature estima- 
tions are obtained as: 

K,, = l R ( r , c - l )  -2R(r,c) + R ( r , c + l ) l  

K,, = l R ( r - 1 , c )  - 2 R ( r , c )  + R ( r , c + l ) l  

C 

C 

R 

The sought curvature is finally obtained as the logical 

Background pixels are given a constant curvature value 
(e.g., 15) that avoids unnecessary concentration of points 
along the boundary between the background and valid 
regions of the image. 

addition of both estimations: K (r, = K R C  K,,. rc 

Figure 1. ( leg Original range image (rendered 
with perspective). (right) Curvature image of the 
given range image. 

Fig. 1 shows an example of a real range image and the 
curvature image obtained by applying this technique. 
Dark regions represent areas of high curvature. 

2.1.2. Range image tessellation 

In order to obtain a quadrilateral mesh adapted to the 
different regions of the range image taking into account 
their particular characteristics, and also in order to favor 
parallelism, both the given range image and its associated 
curvature image are partitioned into a user-defined num- 
ber of rectangular tiles. Each tile is considered to be a 
small range image upon which further processing is 
applied. 

In particular, each range image is divided into H hori- 
zontal and V vertical stripes giving rise to HxV different 
tiles. This partition is not disjoint. A tile shares one row 
or column of pixels with each of its adjacent tiles. 

Hereafter, R,, (r, c) will represent one tile identified 
by the number of both the vertical and horizontal stripe it 
belongs to, v E [ 0, V ) , h E [ 0, H ). The row and column 
coordinates (r, c) are local to the tile: r E [0, R/V], 
c E [ 0, C / H  3 .  K,, (r, c )  represents the curvature image 

corresponding to R,, ( r ,  c).  

2.1.3. Generation of adaptive quadrilateral meshes 

Given a range image tile R,, ( r ,  c )  and its correspond- 
ing curvature image K,, ( r, c), the objective of this step is 
to sample the given tile at x x 4 positions covering the 
whole tile and adapting to the shape of the surfaces com- 
prised in it with the condition that these positions form a 
quadrilateral although not necessarily uniform grid. The 
outcome of this step will be an array of x x 6 points, each 
point consisting of the row and column coordinates of one 
pixel contained in the tile. 

In order to generate this array, each row of the given 
tile is adaptively sampled at < different positions so that 
points tend to concentrate in high-curvature areas and to 
disperse in low-variation regions. 

from range image tiles 
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6 adaptive samples 

Figure 2. (top) Unnormalized probability density 
function f v h r  ( e )  representing curvature 
associated with every pixel c .  (bottom) Uniform 
sampling of the image space of the 
corresponding unnormalized probability 
distribution function Fvhr (c) gives a set of points 
whose density varies according to f vhr  (c). 

This is done as follows. Let Rvhr ( c )  be a row of pixels 
and Kvhr ( e )  its corresponding curvature profile. This 
profile is converted to an unnormalized probability den- 
sity function f v h r  that denotes the probability of selecting 
a given pixel based on its curvature. 

Then, an unnormalized probability distribution 
function Fvhr ( e )  is obtained by “integrating” f vhr  ( c )  : 

r = O  

Fvhr ( e )  is unnormalized since it does not range between 
zero and one but between zero and a maximum value M. 

If the image space of Fvhr ( c )  is sampled at < uniformly 
distributed points, the application of the inverse distribu- 
tion function F- lvhr  ( y )  to those points leads to a set of < 
points adaptively distributed according to f vhr  ( c ) .  This 
principle is illustrated in Fig. 2. In our case, since the 
probability distribution function corresponds to the curva- 
ture estimation, the density of points will depend on that 
curvature and, hence, on shape variations. 

When this procedure is applied to all rows of the given 
tile and, for each row, the 5 selected points are displayed 
in their original positions in the tile, a set of “vertical” 
curves is obtained, Fig. S(left) .  These curves determine 
the columns of the final mesh. Note that they tend to 
approach in areas of high curvature and to disperse in low 
variation regions. Moreover, in those areas without curva- 
ture information, such as the background, curves are 
uniformly distributed like in uniform sampling. 

Owing to the overlap between adjacent tiles, the same 
distribution of selected points is obtained at the common 

Figure 3. (left) Vertical curves after adaptive 
horizontal sampling, with H =  V =  4 and < = 10. 
(right) Horizontal and vertical sampled points with 

boundary. Hence, curves belonging to adjacent patches 
join smoothly. The final result is a complete range image 
sampled in vertical curves that adapt to the shape of the 
individual tiles that make up the whole range image. 

The next step samples each of those curves at xdiffer- 
ent positions for every tile. The principle is similar to the 
one applied before, but now the curvature profiles utilized 
to obtain the unnormalized probability density function f 
are not obtained from rows of pixels but from the pixels 
that make up one of the curves. Each vertical curve inside 
a tile is traversed and the curvature values associated with 
its pixels are stored in a vector utilized as a new curvature 
profile. 

Given this curvature profile, an unnormalized probabil- 
ity density function and its corresponding unnormalized 
probability distribution function are computed similarly 
to (1) but now considering that the input parameter is the 
row number instead of the column number used before. 

In the end, each vertical curve of each tile is adaptively 
sampled at xpositions that adapt to the shapes contained 
in the tile with independence from the other tiles. Again, 
the overlap between adjacent tiles guarantees the continu- 
ity of rows of pixels between horizontal adjacent tiles. 

Fig. 3(right) shows the set of points obtained in this 
way. Notice how points tend to concentrate in areas of 
high curvature and to disperse in low variation regions. 
Uniform sampling is obtained in no variation regions 
such as the background. The final adaptive quadrilateral 
mesh is trivially computed by joining all those points hor- 
izontally and vertically. 

Fig. 4 shows the uniform (top) and adaptive (bottom) 
quadrilateral meshes that approximate the given range 
image with 37x37 points each. Notice that the uniform 
mesh misses details that are captured by the adaptive 
mesh-take a look at the jump and crease edges marked 
on the figure. In  order to display these images, each quad- 
rilateral cell has been split up into two triangles by 
applying the technique described below. 

x= ( =  10. 

630 



0 0 
. _ _ _ _ _ _ _ - _ _ _ _ _ 2  

Figure 5. Possible triangulation of four points and 
their respective approximation error volumes. 

min optimality criterion and is used to incrementally gen- 
erate Delaunay triangulations (see [7] for a recent survey 
on triangulation algorithms). However the problem of this 
technique is that the original surface (range image in our 
case) is not considered for the diagonal choice. That may 
lead to incorrect behaviors when either surface or orienta- 
tion discontinuities are present in the cell, since edges can 
be cut off by wrongly chosen diagonals. 

The solution to this problem involves the application of 
a data-dependent triangulation [8] that takes into account 
the underlying shape of the surfaces contained in the cell. 
Two different criteria are proposed in [8]. The first one 
takes into account the normals of the triangles and 
chooses that combination of triangles with a minimum 
angle between their normals. This heuristic will not pre- 
serve discontinuities though and, therefore, it is not useful 
in our context, since edges will be cut off. 

The second approach leads to a method that computes 
the difference (vertical distance) between each of the two 
possible triangulations and the pixels covered by those 
triangles. The objective then is to choose the triangulation 
that produces the lowest difference and, hence, error. 

However, this technique does not always work prop- 
erly. Suppose we want to approximate a wall 
perpendicular to a planar surface. Only four points are 
considered: two points on top of the wall (C,D) and two 
more points on the planar surface (A,B) as shown in Fig. 
5. Those points admit two possible triangulations. Fol- 
lowing the aforementioned technique, we would chose 
the flip that produces the lowest error volume. Error vol- 
umes are shown as dark regions in the figure. Therefore, 
the flip on top would be chosen as best although it does 
not preserve the surface discontinuity. This means that in 
order to keep discontinuities and thus the shape of the 
underlying surfaces, the error criterium is not always 
reliable. 

Experimental results show that this error criterium 
tends to produce artifacts along edges, leading to flips that 

Figure 4. (top) Uniform quadrilateral mesh with 
37x37 nodes. (bottom) Adaptive quadrilateral 
mesh with 37x37 nodes. 

2.2. Data-dependent triangulation 
of quadrilateral cells 

The outcome of the previous stage is a quadrilateral 
mesh with ($- 1) V +  1 rows and (5-  1) H +  1 col- 
umns, H and V being the number of horizontal and 
vertical partitions of the range image into tiles and Rand 
6 the number of rows and columns in which every tile is 
sampled. Each node of the quadrilateral mesh contains the 
row and column of a pixel of the range image and its cor- 
responding value (depth measure). The objective now is 
to divide each of those cells into two triangles in order to 
obtain a triangular approximation of the given range 
image. 

Several approaches have been proposed in the literature 
to perform the only apparently trivial operation of trian- 
gulating a quadrilateral cell. The problem consists of 
choosing the right diagonal used to split that cell-some- 
times referred to as choosing the right$@. 

2.2.4. Previous approaches 

A popular method consists of choosing the diagonal 
that maximizes the minimum of all angles of the resulting 
triangles. This heuristic is known as the Lawson S max- 
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Figure 6. Triangulation of an adaptive 
quadrilateral mesh through an error-based 
diagonal selection algorithm (quadrilateral cells 
are shown in wireframe and triangles are shaded). 

do not always agree with the orientation of discontinuities 
(see Fig. 6 and compare it with the result obtained with 
the proposed technique shown in Fig. 4[bottom]). 

A similar problem worsened by a downfall in perfor- 
, mance is obtained by applying techniques based on 

energy functions [9]. A different approach to the diagonal 
selection problem proposed in [lo] and based on choos- 
ing the diagonal whose 3D length is smallest will also 
choose the top flip given the four points we have used for 
this example. 

In this paper a different technique is proposed to trian- 
gulate a quadrilateral cell taking into account the 
discontinuities contained in it. This technique is general 
in the sense that can be applied to all kinds of quadrilat- 
eral meshes: adaptive and uniform. 

The proposed technique is composed of three steps. 
First, the 2D gradient vector associated with each pixel of 
the given range image is estimated. Second, for each 
quadrilateral cell, an estimation of the overall gradient 
associated with the pixels traversed by each of its two 
possible diagonals is computed. Finally, the diagonal 
whose direction is closest to the perpendicular to that gra- 
dient vector is chosen as the one which best keeps the 
underlying discontinuities in the cell. These steps are 
described next. 

2.2.5. 2D gradient estimation 

Let R ( r ,  c )  be the given range image. The objective 
now is the generation of a gradient image G ( r ,  c )  that 
keeps, for every pixel of the range image, a 2D vector that 
represents the projection onto the range image reference 
plane of the normal to the surface corresponding to that 
pixel. The norm of this vector is proportional to the mag- 
nitude of the derivative of the underlying surface at that 
pixel. The gradient image is obtained as follows: 

The gradient image is filtered to reduce fast changes of 
orientation of the gradient vectors associated with neigh- 
boring pixels. Specifically, the 2D gradient vector at each 
pixel is substituted for the composition of the gradient 
vectors associated with that pixel and its eight neighbors. 
The composition of two 2D vectors, v = ( v ~ ,  v,), 
w = ( w l ,  w,), is done as follows: 

where v . w is the dot product between both vectors. 

2.2.6. Resultant gradients associated with the 

Let us consider each quadrilateral cell of the adaptive 
quadrilateral mesh obtained above. Each cell is composed 
of four points: { ci, j 9 ci,,; + I J ci + I ,  .; 7 ci + 1, ,; + I 1, where 
Ci, j is the top-left cell’s node and C i +  l , , j +  the bottom- 
right cell’s node. The components of Ci, are the row and 
column of a pixel and its corresponding value: 
C . .  1, J = { r i , j , c i , j , R ( r . . , c .  & J  G J  . ) I ,  

The goal of this stage is to obtain, for each of the two 
possible diagonals that can split up that cell, a resultant 
gradient vector obtained by composing (2) the gradients 
associated with the pixels traversed by that diagonal. That 
resultant gradient will describe the orientation of the dis- 
continuities crossed by the given diagonal. 

Two diagonals are considered for each cell: 

In both cases, the set of pixels traversed by a diagonal is 
determined by applying Bresenham’s algorithm [ 111 to 
“draw” a straight line between the pixels corresponding to 
the initial and final nodes of the cell. In order to take into 
account aliasing effects due to the discretization of that 
straight line, the latter is thickened by adding, for each 
pixel, its neighbors above and below. 

In summary, given a certain diagonal, a set of pixels is 
selected. Then, the gradient vector associated with that 
diagonal is obtained by composing, using (2), the 2D gra- 
dient vectors G ( r ,  c )  corresponding to each selected 
pixel from the set. Finally two resultant gradients are 
obtained, G:j and G l j ,  one for each diagonal. 

2.2.7. Diagonal selection 

From the resultant gradients, the one with largest norm 
is chosen as the final representative of the orientation of 
the discontinuities that are potentially involved in the 
diagonal selection process. Let 
G . .  1.J = { G  [ i ,  j 1 h’ be that resultant gradient 

diagonals of a quadrilateral cell 

D’. 1% J = { C i , j ~ C i + l , j + l I  and Di,; = {Ci,j+l jC i+ l , j I .  

[ i ,  j 1 
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associated with cell (i, j ) .  Next a tangent vector is com- 

Since this tangent is orthogonal to the resultant gradi- 
ent vector, it agrees with the orientation of the 
discontinuities present in the cell. The objective now is to 
choose as splitting diagonal the one whose direction is the 
most similar to the direction of T1, J .  

Let ol,J be the orientation of obtained as 
bl , ,  = atan(T[l,, lv/T,l , ,  1 h )  . The orientations of both 
diagonals are obtained as 

puted as: ‘ 1 , J  = { T [ l , / ] h ’  T [ l , j ] V 1 = { G [ l , j ] V ’ -  G [ l , J  ] h l ’  

Let us consider 6’ = (a: - pi,j 1 . The minimum angle 
between Ti,; and diagonal D+ . is defined as 

1,J 

.n - 6+ otherwise 

The minimum angle p- between and Di/ is 
defined analogously. Finally, diagonal D:j is selected to 
split up the given quadrilateral cell if p+ 5 p-. Otherwise, 
diagonal Di, I will be selected. 

3. Experimental results 

The proposed technique has been applied to real range 
images containing both surface and orientation disconti- 
nuities (jump and crease edges). 

Since this technique is devised to improve the quality 
of approximation of edges and they usually cover a small 
percentage of the overall range image, improvements are 
qualitative rather than quantitative and, hence, they are 
better appreciated through images of the final result. 

The example used so far corresponds to a 197x187 
(rows x columns) range image. This image has been split 
up into 4 by 4 tiles ( H  = V = 4) and 10 by 10 points have 
been adaptively sampled at each tile. After a 37x37 adap- 
tive mesh is generated, its quadrilateral cells are split up 
using the technique proposed above. Fig. 4(bottom) 
shows the final result of applying the proposed technique. 
Quadrilateral cells are shown in wireframe while triangles 
are shaded. In contrast, Fig. 6 shows the same quadrilat- 
eral mesh triangulated using the error-based diagonal 
selection method described in section 2.2. Notice the arti- 
facts along edges in the latter. Finally, Fig. 4(top) shows 
the approximation of the original range image from a uni- 
form quadrilateral mesh with the same number of points 
and applying our diagonal selection algorithm. The CPU 
time to compute the final triangulation was 0.60 sec. on a 
200 MHz R4400 SGI Indigo 11. From this time, 0.25 sec. 
were used by the diagonal selection algorithm. 

4. Conclusions and further improvements 

This paper presents an efficient technique for generat- 
ing adaptive triangular meshes from range images. 

Initially, the algorithm generates an adaptive quadrilateral 
mesh from the range image. This mesh is more accurate 
than a uniformly sampled one since it distributes the same 
number of points considering the curvature of the sur- 
faces contained in the range image. Then, each 
quadrilateral cell is divided into two triangles by choosing 
one of the two possible diagonals. This choice is based on 
a selection algorithm that analyzes the orientation of the 
gradient at the pixels traversed by those diagonals. The 
proposed diagonal selection technique is general in the 
sense that can be applied to any kind of quadrilateral 
meshes (adaptive or uniform). 

The current technique only tries diagonal flips inside 
quadrilateral cells. An immediate improvement consists 
of trying to flip edges that originally define the quadrilat- 
eral cells. A further line of research will consist of 
automatically determining the number of rows and col- 
umns of the quadrilateral mesh and thus the number of 
points and triangles of the final triangular mesh. 

An implementation of this technique in C is available 
by contacting the authors. 
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