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Abstract Optical flow has got a major role in making advanced driver assistance
systems (ADAS) a reality. ADAS applications are expected to perform efficiently
in all kinds of environments, those are highly probable, that one can drive the
vehicle in different kinds of roads, times and seasons. In this work, we study the
relationship of optical flow with different roads, that is by analyzing optical flow
accuracy on different road textures. Texture measures such as contrast, correlation
and homogeneity are evaluated for this purpose. Further, the relation of regulari-
zation weight to the flow accuracy in the presence of different textures is also
analyzed. Additionally, we present a framework to generate synthetic sequences of
different textures in ADAS scenarios with ground-truth optical flow.
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1 Introduction

Computer vision has got many applications in human life safety, assistance and
comfort. Among them, the safety of automotives and people has got relevant
importance in the present world. With the advance in computing performance,
computer vision plays a major role in making these assistance and safety appli-
cations a reality. The information about the visual motion is very important for
ADAS applications such as egomotion, moving object detection, autonomous
navigation etc. (e.g., [1, 2]). A well known visual motion estimation instrument is
optical flow. Optical flow is the apparent displacement vector field between two
image frames. The seminal work on optical flow dates back to 1981. Horn and
Schunck proposed a variational formulation to estimate dense optical flow in [3].
At the same time, Lucas and Kanade [4] proposed another approach that computes
sparse flow field. In general, optical flow methods can be classified as global and
local. Global methods produce dense, whereas local methods give sparse flow
fields. A huge amount of work has been proposed during the last three decades;
interesting surveys can be found in [5] and [6]. An empirical evaluation of optical
flow methods on complex image sequences is presented in [5]. In [7], Galvin et al.
evaluate eight different optical flow algorithms. Later evaluation of optical flow
algorithms with benchmarking suite of image sequences and tools are proposed by
McCane et al. in [8].

The research on optical flow has been getting lots of interests in recent years.1

Most of the approaches are variational methods [3, 9, 10], which produce dense
flow fields. These works concentrate on robust edge-preserving regularization
(e.g., [11–13]), and sophisticated data terms [14]. The developments in respective
parts of optical flow estimation are discussed in detail in [6]. Recently, in [15], the
concepts such as pre-processing, coarse-to-fine warping, graduated non-convexity,
interpolation, derivatives, robustness of penalty functions, median filtering are
explored and the best formulation out of variants of all these is discussed.

A typical variational method involves a data term and a regularization term that
makes the problem well posed. As per our knowledge almost all methods fix the
regularization weight empirically. Even though there is a large amount of work on
optical flow, there are no considerable efforts to adapt the regularization weight
based on some features of the given sequence. In [13], an automatic selection
approach based on optimal prediction principle is presented. It predicts the reg-
ularization weight based on the computed flow field and data constancy error. But
it also involves a brute-force method of selecting the weight empirically. In ADAS
domain, the vehicle can be driven in any kind of environment such as urban,
highway and countryside, and at different times in a day and in different seasons.
Hence, it is impossible to compute accurate optical flow in all the scenarios with a
fixed regularization weight. Note that for an ADAS involving visual motion per-
ception, it is very important to estimate accurate optical flow in all such scenarios.

1 http://vision.middlebury.edu/flow/
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In that direction, it is clear that it is necessary to adapt the motion perception
algorithms for the occurring scenario directly using some features of the image
frames being captured at times. Different scenarios can be regarded as different
textures and different structural scenes. In the current work, we study the effect of
different textures on optical flow in ADAS domain. Specifically, the change in
accuracy of flow field with different regularization weights in the presence of
different textures is analyzed; trying to find correlations between accuracy, texture
information, and regularization weights.

For the work planned above, it is required to have datasets of image sequences
with ground-truth optical flow. Few sequences with ground-truth optical flow have
been proposed in [16, 17]. But none of them are suitable for our intended study. It
is difficult to obtain ground-truth optical flow for real-world scenarios unless it is
done in controlled environments. Particularly for the work in this paper, it is not
possible to have or create a real scenario, neither possible to generate dense
ground-truth flow field. Therefore, we present a framework to generate synthetic
image sequences where the same geometrical scene is used but with different
textures; furthermore this framework allows to compute the ground-truths.

The paper is organized as follows. An overview of the basic variational optical
flow estimation is presented in Sect. 2. Section 3 describes the texture measures.
The framework for generating the sequences and ground-truth is described in
Sect. 4. Section 5 presents the experimental analysis. Finally, the work is con-
cluded in Sect. 6.

2 Optical Flow Overview

The classical variational method of Horn and Schunck [3] assumes the constancy
of brightness, which is also called optical flow constraint (OFC). The OFC can be
formulated as: I1ðxþ uÞ � I0ðxÞ ¼ 0, where I0 and I1 are two images, x ¼ ðx1; x2Þ
is the pixel location within the image space X � R2; u ¼ ðu1ðxÞ; u2ðxÞÞ is the two-
dimensional flow vector. Linearizing the above equation using first-order Taylor

expansion we get OFC as: ðIx1u1 þ Ix2u2 þ ItÞ2 ¼ 0, where subscripts denote the
partial derivatives. Using only local intensity constraints do not provide enough
information to infer meaningful flow fields, make the problem ill-posed. In par-
ticular, optical flow computation suffers from two problems: first, no information
is available in un-textured regions. Second, one can only compute the normal flow,
i.e., the motion perpendicular to the edges. This problem is generally known as the
aperture problem. In order to solve this problem it is clear that some kind of
regularization is needed. The Horn and Schunk [3] method overcomes this by
assuming the resulting flow field globally smooth all over the image, that can be
realized as penalizing large flow gradients. Combining OFC and regularization in a
single variational framework and squaring both constraints yields the following
energy function:
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EðuÞ ¼
Z
X
f ðIx1u1 þ Ix2u2 þ ItÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Data Term

þ a ðjru1j2 þ jru2j2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Regularization

Þg dx;
ð1Þ

where a is the regularization weight. This energy function can be minimized by
solving the corresponding Euler-Lagrange equations. Another well known
approach to minimize variational energies is by dual formulation [18].

3 Texture Measures

It is necessary to quantify texture properties to study the influence of different
textures on the accuracy of optical flow. These texture properties are used to
correlate with optical flow accuracy. In this direction, we use basic texture mea-
sures such as contrast, correlation and homogeneity. These textural measurements
are computed over Gray-Level Co-occurrence Matrix (GLCM) [19] of an image.
A GLCM is a matrix that is defined over an image as the distribution of co-
occurring values at a given offset. A co-occurrence matrix P is defined over an
image I of size m1 � m2, parameterized by an offset ðDx;DyÞ as:

PDx;Dyði; jÞ ¼
Xm1

k¼1

Xm2

l¼1

1; if Iðk; lÞ ¼ i and Iðk þ Dx; lþ DyÞ ¼ j:

0; otherwise:

(
ð2Þ

The most widely used, computed on the texture metrics on the normalized GLCM,
are the following:

Contrast ¼
XNg�1

n¼0

n2f
XNg

i¼1

XNg

j¼1

pði; jÞg; ji� jj ¼ n ð3Þ

Correlation ¼
PNg

i¼1

PNg

j¼1ðijÞpði; jÞ � lxly
rxry

ð4Þ

Homogeneity ¼
XNg

i¼1

XNg

j¼1

pði; jÞ
1þ ji� jj ð5Þ
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where pði; jÞ is the ði; jÞth entry in normalized GLCM; Ng is the number of distinct
gray levels in the quantized image; lx, ly, rx, and ry are the means and standard

deviations of px and py: pxðiÞ ¼
PNg

j¼1 pði; jÞ and pyðjÞ ¼
PNg

i¼1 pði; jÞ.

4 Framework for Synthetic Dataset

The specific goal of this work is to study the effect of different road textures on the
accuracy of optical flow computation in the ADAS scenario and to unveil their
relationship. For that, it is required to have images with the same structural scene
but with different textures. It is impossible to find such a scenario in the real world.
Moreover, it is not possible to obtain ground-truth optical flow from such real-
world scenarios unless it is done in sophisticated controlled laboratory environ-
ments. So, in the current work, we present a framework to generate synthetic
image sequences. The framework can generate image sequences with exactly
similar scene structures and with exactly the same acquisition condition (i.e.,
vehicle speed, camera pose, et.,), but with different textures. There are some works
to generate synthetic datasets with ground-truth data in the literature (e.g., [16, 17,
20] and [21]). In [16], authors provide ground-truth information for several syn-
thetic as well as real sequences, whereas in [17], synthetic sequences for ADAS
are provided. Later Aodha et al. present a framework for synthetic dataset gen-
eration in [20]. Following the framework proposed in [20] a set of synthetic
sequences for different speeds of the vehicle are presented in [21]. The datasets
provided in these previous works can be used to compare different optical flow
techniques, but do not provide sequences with different textures. For the intended
study, we generate our own dataset and make it available for the whole community
for further research through our website.2 We use a framework similar to [20] and
construct a 3D urban model, which contains road, sky and several buildings using
Maya.3 A camera is made to move in the model along the road, mimicking the
camera fit inside a moving vehicle. The image frames are rendered for the camera
movement timeline. Similarly, several different image sequences are generated by
changing road textures in the model. Also, the ground-truth flow vectors are
generated for the camera movement using ray-tracing technique on 3D Maya
model. In ADAS, the road surface covers major area in the visibility of the vehicle
camera and the structures in the sides of the road vary a lot depending on the
environment (urban, highway, hilly etc.). So the flow vectors on the road surface
are generally preferred in ADAS applications since they are more reliable and

2 www.cvc.uab.es/adas
3 www.autodesk.com/maya
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cover a large part of the image. Hence, using the framework described in this
section we generate several sequences of the same structural scene with different
road textures. The generated images and ground-truth flow fields are of resolution
640� 480. Figure 1 shows images from sequences of different textures, but
having the same structural scene. The image in Fig. 1 (bottom-left) shows the
ground-truth flow field. The ground-truth flow field is the same for all the
sequences shown there, as the ray-tracing technique used gives the same dis-
placement information based on the structural geometry of the scene irrespective
of the texture.

5 Experimental Analysis

In order to make the analysis and conclusion precise and easier, we have con-
sidered three sequences of different textures. The textures are different at least on
the road surface, but the structures of the scene are exactly the same in all the three
sequences. Let us refer to these sequences as T1, T2 and T3. These sequences are
selected in the increasing order of the textural property, contrast. For further
experimentation, we have selected several pairs of images from the sequences at
specific locations and present the results as average values of all these selected
pairs. Hereinafter, the results obtained from these sets of image pairs are referred
to as the results obtained from the corresponding sequences.

Now the task is to find the relation between the accuracy of optical flow,
textural property of images and the regularization weight involved in optical flow
estimation. For computing the optical flow, we use the method proposed in [15],
that involves weighted median filtering. First, optical flow is computed on the sets
of image pairs from different sequences. Then, errors (both average angular error
(AAE) and average end-point error (AEPE)) are computed between the estimated
flow fields and the ground-truth flow fields. The ground-truth flow fields for all the
three sequences are the same.

To study the effect of regularization weight on the accuracy, first we empiri-
cally analyzed optical flow error on different pairs of images for a wide range of
values of regularization weights and determined that the range from 1 to 22 at
intervals of 1 or 2 would be fine for further analysis. Then, we estimated optical
flow for values of regularization weight within the most suitable range of values
(i.e., 1–22). Figure 2 (left) shows the curves of AAEs corresponding to sequences
T1, T2 and T3 for different values of regularization weight. The minimum AAE
for each sequence is marked as � on the curve. Similarly, AEPE error curves are
shown in Fig. 2 (right).

Further, textural measures explained in Sect. 3 are computed on one of the
images of each sequence. Since road is the major and reliable surface in ADAS
scenarios, we compute texture metrics on a Region Of Interest (ROI) on the road
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surface. The texture metrics, minimum AAEs, minimum AEPEs, and the regu-
larization weights corresponding to the minimum errors are depicted in Table 1.

The curves in Fig. 2 and texture metrics in Table 1 indicate that image
sequences with higher texture contrast produce smaller AAE and AEPE,

Fig. 1 Top-left consecutive frames of a sequence; top-right and middle frames of different
texture; bottom-left ground-truth flow field from images in top-left; bottom-right colormap used to
show the flow field
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independently of the regularization factor a. We can see in Fig. 2, both (left) and
(right), that curve of T1 is above T2, and T2 is above T3. In Table 1, T3 has higher
contrast than T2, and T2 has higher contrast than T1. Similarly, the sequence with
lower values of correlation or homogeneity produce smaller errors. One can see in
Fig. 2 (right), the AEPE of T1 increases drastically with the increase in a. So one
should be careful in tuning the a parameter when dealing with sequences of low
texture contrast. Another interesting conclusion that can be drawn from this study
is that, for higher texture contrast sequences, the minimum error is obtained by
increasing the regularization factor a. This can be observed in Fig. 2 marked by �
and also in the Table 1, the a values of minimum errors. Although in the plots only
three curves have been depicted, this conclusion has been extracted from a larger
set up using nine sequences of different textures. Figure 3 presents four additional
ROIs with the textures from the road surface used to validate the results from our
studies. In these four cases, similar behavior like the ones presented in Fig. 2 and
Table 1 were obtained.

Table 1 Texture metrics, minimum AAEs, minimum AEPEs, regularization wights for the
minimum errors for T1, T2 and T3

Sequence T1 T2 T3

min AAE 1.0339 0.9159 0.8515
a of min AAE 14 18 18
Contrast 0.0488 0.0850 0.1255
Correlation 0.9386 0.8611 0.7168
Homogeneity 0.9765 0.9575 0.9372
min AEPE 0.1447 0.1152 0.1079
a of min AEPE 5 7 8
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Fig. 2 Left AAEs for three sequences for different regularization weights; right similarly AEPEs
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6 Conclusions

In this work, the behavior of optical flow accuracy for different textural properties
and their dependency on the regularization factor in ADAS scenarios is studied. It
is evident that the sequence with higher textural contrast gives more accurate flow
estimation and a more special care should be taken while tuning the regularization
factor for sequences with low contrast more than those with higher contrast. It is

Fig. 3 ROIs of road surface from different sequences with different textures
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also observed that, increasing the regularization factor gives better results with
increase in textural contrast of sequences. A framework to generate synthetic
sequences of different textures with the ground-truth optical flow is also presented
along with the dataset generated. The presented framework motivates deeper study
of the relationship between the optical flow accuracy and scene texture using more
sophisticated texture metrics.
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