
Proceedings of the 1999 IEEE
International Conference on Robotics & Automation

Detroit, Michigan 9 May 1999

Efficient Generation of Object Hierarchies from 3D Scenes

Miguel Angel Garciat Angel Doming0 Sappa$ Luis Basaiiez*

?Department of Computer Science Engineering
Rovira i Virgili University

Ctra. Salou s/n. 43006 Tarragona, Spain
magarcia@ etse.urv.es

* Inst. of Organization and Control of Industrial Systems
Polytechnic University of Catalonia

Diagonal 647, planta 11. 08028 Barcelona, Spain
{ sappa, basanez} @ioc.upc.es

Abstract

This paper describes an efficient technique for com- '
puting a hierarchical representation of the objects
contained in a complex 3 0 scene. First, an adjacency
graph keeping the costs of grouping the different pairs of
objects in the scene is built. Then the minimum spanning
tree (MST) of that graph is determined. A binary cluster-
ing tree (BCT) is obtained from the MS'I: Finally, a
merging stage joins the adjacent nodes in the BCT which
have similar costs. The final result is an n-ary tree which
defines an intuitive clustering of the objects of the scene
at different levels of abstraction. Experimental results
with synthetic 3 0 scenes are presented.

1 Introduction
Keeping an efficient representation of the environment

where a robot operates is an important issue in order to
guarantee the effective application of many algorithms,
including path planning and collision avoidance. Hierar-
chical models are such efficient representations as they
allow the description of complex geometric structures at
different levels of resolution through the use of basic
geometric primitives, such as boxes and spheres.

Hierarchical structures haven been proposed in the
world modeling literature for two main purposes. The
first purpose has been the representation of individual
objects (intra-object representation) through hierarchies
of boxes (e.g., [5][6][7]) or circles and spheres (e.g.,
[2][31[41). The second purpose, which has received less
attention, has been the representation of the different
objects of a scene (inter-object representation) through
hierarchies of spheres or convex-hulls. Previous work in
this line is reviewed in [8].

Those two types of hierarchical representations are
structurally similar but semantically quite different.
Intra-object representations pursue the description of sin-

This work has been partially supported by the Government of Spain
under the ClCYT project TAP96-0868. The second author has been
supported by the Spanish Agency for International Cooperation and
the National University of La Pampa (Argentina).

gle objects with different approximation errors. Each
level of the hierarchy contains a set of geometric primi-
tives that approximate the original object at a certain
error.

Inter-object representations aim at grouping the
objects of a scene into clusters that reflect the spatial dis-
tribution of the objects and, ideally, unveil the functional
organization of the scene. For example, an ideal objec-
tive might be to group the objects lying on a table into
one cluster, then those objects, the table and the chairs
around it into a new cluster, then the latter and other
clusters corresponding to pieces of furniture inside the
room into a single cluster, and so forth. Both inter-object
and intra-object representations are complementary.
Thus, each leaf of an inter-object representation can well
be the root of an intra-object representation describing
the corresponding object.

Intra-object representations usually apply a refinement
(top-down) algorithm that subdivides larger geometric
primitives into smaller ones until an approximation error
is satisfied. This error-based approach can also be
applied to building inter-object representations, by con-
sidering that the goal is the approximation of a large
object with a certain error. However, a scene is conceptu-
ally different to an object in the sense that the latter has
physical continuity while the former will usually contain
isolated parts (individual objects) separated by empty
space of arbitrary size. The extraction of an intra-object
representation as it is understood (the geometric primi-
tives at the same level cover the whole object), would
lead to the generation of primitives even for covering the
regions of empty space in the scene.

A more suitable algorithm for extracting inter-object
representations was proposed in [8]. It is based on a bot-
tom-up strategy that starts with the bounding volumes
(e.g., spheres, convex hulls) of all the objects in the scene
and groups them into bigger bounding volumes by apply-
ing heuristic rules that favor the progressive growth of
those volumes. The algorithm goes over all the possible
pairings of objects in the scene and for those whose dis-
tance is below a certain moving threshold (progressively
larger) it computes a grouping cost. The pair of objects
with lowest cost is grouped and the costs between the

0-7803-51 80-0-5/99 $10.00 0 1999 IEEE 1359

new and the old clusters are recomputed. The algorithm
stops when a single cluster is left. Thus, a binary tree is
generated.

At each iteration, the cost function defined in [8] takes
into account three heuristics that favor the grouping of
the candidate pair of objects (or clusters) whose bound-
ing volume has: (I) the smallest volume, (2) the smallest
amount of empty space inside and (3) the most similar
ratio between the size of the two objects (or clusters) that
constitute that candidate pairing. The cost function is
defined by a weighted average of those three criteria.

This paper presents a more efficient approach to the
problem of inter-object grouping. Similarly to [8], the
algorithm starts with the bounding volumes of the
objects contained in the scene and clusters them into a
tree. However, the proposed algorithm is more advanta-
geous than the one presented in [8] since: (I) efficiency
is higher as the costs between all objects of the scene are
computed once, (2) there are not user-tuned parameters
or thresholds and (3) the generated tree is n-ary instead
of binary and, thus, it is shallower.

The proposed algorithm is described in section 2. Sec-
tion 3 shows experimental results and a comparison with
the technique described in [8]. Section 4 gives conclu-
sions and further improvements.

2 Hierarchical Clustering of Scene Objects

An efficient algorithm is presented for generating a
hierarchical clustering of the objects of a complex scene.
The algorithm follows a bottom-up strategy that starts
with the bounding spheres of the objects in the scene and
progressively clusters them to produce an n-ary tree. The
bounding spheres are allowed to overlap. Each node of
the tree represents a level of abstraction in the scene and
has associated the bounding sphere that contains all the
bounding spheres that correspond to the clusters (or
objects) below that node.

The algorithm is composed of four stages. First, an
adjacency graph keeping the costs of grouping the differ-
ent pairs of objects in the scene is built. Then the
minimum spanning tree (MST) of that graph is obtained.
From the MST, a binary clustering tree (BCT) is defined.
Finally, a merging stage joins those adjacent nodes in the
BCT that have similar costs. The final result is an n-ary
tree which defines an intuitive clustering of the objects of
the scene at different levels of abstraction. These stages
are described below.

2.1 Adjacency Graph Generation

Let S be the set of N bounding spheres associated with
the N objects of a scene. Let si and sj be two bounding
spheres contained in S and ri and r . their corresponding
radius. Let d . . be the distance between the centers of Si
and s,. Finally, let rij be the radius of the smallest
bounding sphere, si j , which contains si and s j .

J
Y

The attraction between Si and S. is defined as
a.. = r . r . / d ... The bigger and closer the two spheres

JJ J JJ
are, the larger their attraction will be. Intuitively, spheres
with large attractions should tend to be grouped into the
same clusters as they would denote close objects.

However, if the clustering algorithm only took the pre-
vious attraction into account, the size of the resulting
cluster would not be considered, and that could lead to
big clusters being created from the beginning of the bot-
tom-up clustering process. Since this process is intended
to create a hierarchy in which the leaves, which are the
initial spheres in S, are progressively grouped until
obtaining the scene’s bounding sphere at the root of the
tree, a more appropriate strategy will be to favor that
small clusters are created first. This policy, which was
already applied in [8], favors the generation of balanced
trees. In our case, this policy is applied by defining a cost
function that increases the cost of grouping two spheres
of high attraction when the volume of their smallest
bounding sphere is very big. This cost function is defined
as <.. = r?./ a . . .

The first stage of the hierarchical clustering algorithm
defines a fully connected weighted graph with as many
nodes as objects in the scene and an edge joining each
pair of nodes. Each edge has associated a weight which
corresponds to the cost of grouping the spheres repre-
sented by the two nodes joined by this edge according to
the previous cost function 5 , . The number of edges, and
thus the cost of creating this graph is 0 (N2). As in [8],
assuming that each object cannot merge with more than a
constant number k of bodies the number of edges in the
graph becomes O (N) . Moreover, if a space partition
technique was utilized that graph could be built in 0 (N)
time.

2 J

V 1J V

2.2 Minimum Spanning Tree Generation
Given the previous adjacency graph, the next objective

is the generation of a hierarchy (tree) of nodes whose
edges have a minimum cost. This is done by computing
the minimum spanning tree of the previous adjacency
graph. The minimum spanning tree (MST) of a graph G
is the acyclic subgraph of G that contains all the nodes of
G and such that the sum of the costs associated with its
edges is minimum. The MST of a graph with M edges
and N vertices can be efficiently computed in 0 (M l o g N)
by appl ing Kruskal’s algorithm [11. In our case, the cost

and 0 (NlogN) for the best case (k neighbors plus space
partitioning). Fig. l(left) shows an example of a con-
nected adjacency graph and its MST.

2.3 Binary Clustering Tree Generation
The minimum spanning tree of the adjacency graph is

not directly used to define a clustering of the objects in
the scene since, to start with, the root of the tree is not
defined. Therefore, a first clustering is done by con-

is 0 (N tl logN) for the worst case (fully connected graph)

1360

10.3

4.1

- Minimum Spanning Tree

Figure 1. (leff) Example of adjacency graph and its MST.
(right) Binary clustering tree obtained from the previous MST.

structing a binary clustering tree (BCT) from the MST.
The BCT is generated by considering the edges from the
MST in ascending order of weight. Each considered edge
E leads to a new cluster being added to the BCT. The
new cluster embodies the clusters that contain the two
nodes connected by E, if those clusters exist. The weight
(cost function) associated with E is assigned to the new
cluster. Each cluster is associated with the smallest
bounding sphere that contains the bounding spheres of
the nodes or clusters contained in it. The cost of comput-
ing the BCT from the MST is 0 (NlogN)

This process is illustrated with the MST shown in Fig.
I(left). The obtained BCT is shown in Fig. I(right). The
first edge is the one joining nodes G and D, as its weight
is the lowest (3.7). Thus, a first cluster, G-D, is formed.
The second edge in ascending order is the one joining
nodes A and C (weight 4). A new cluster, A-C, is cre-
ated. The third edge is the one joining nodes D and E
(weight 4.1). Since D already belongs to a cluster, G-D, a
new cluster, G-D-E, is formed by grouping node E and
cluster G-D. The final edge is the one joining nodes D
and F (weight 10.3). Since both nodes belong to two
clusters at that time (G-D-E and F-H-A-C-B), the root is
finally cluster G-D-E-F-H-A-C-B. Each cluster is labeled
with the weight of its corresponding edge.

2.4 Cluster Merging

The previously obtained BCT is already a solution to
the clustering of the initial objects in the scene. However,
binary trees do not always reflect the real structure of the
objects of a scene, where a cluster may contain several
objects at the same level. Moreover, binary trees tend to
become very deep. Hence, n-ary trees in which a cluster
can contain two or more clusters or nodes appear to be a
more appropriate solution.

The final stage of the proposed algorithm converts the
BCT into an n-ary tree in 0 (N) time by merging com-
patible clusters. In order to do this, the weights
associated with the clusters in the BCT are partitioned
into a set of families. Each family of weights denotes a
set of objects which have similar grouping cost. After the
MST generation stage, a list of the weights associated

- Fl - -
'. /--

\
\ \

&:,
, # ' I

G-D-E-F-H-A<-B

Figure 2. (top) Merging process applied to the clusters of the
BCT shown in Fig. l(n'ght). (bottom) Final structure.

with the edges of the MST sorted in ascending order is
obtained. The first two weights in this list define the first
family of weights F o . Let CL, and oi be the mean and
standard deviation of the weights that belong to a certain
family of weights F, . A weight w is considered to belong
to the family F i if w < li + 2oi. If a weight is assigned
to a family, the mean and standard deviations of the latter
are recomputed.

Starting with the third weight in the sorted list, the first
family Fo is increased with new weights until a weight
is found not to belong to Fo according to the previous
criterium. This weight and the next one are the seed for a
new family F1 . This grouping process ends up when all
the weights in the sorted list have been considered, giv-
ing rise to a set o f f families. For example, given the
weights shown in the example of Fig. 1, three families
would be obtained: Fo = { 3.7,4,4.1,4.8},
F 1 = {7.1,7.3} and F2 = { 10.3).

Once the families of weights have been found, the
BCT is converted to an n-ary tree by merging adjacent
clusters whose weights belong to the same family. This is
illustrated in Fig. 2(top). The first family of weights, Fo ,
gives rise to clusters G-D and G-D-E being joined in a
single cluster as they have weights that belong to F o .
Similarly, but in a different part of the tree, clusters A-C
and A-C-B are also joined. Then, family F , leads to the
merging of clusters F-H and F-H-A-C-B, as their corre-
sponding weights belong to F , ~ Finally, family F2 does
not lead to any clusters being joined as it is only com-

1361

Figure 5. Original objects and their bounding spheres.

Figure 3. Example of a 3D scene and labels of the different
nodes (objects) contained in it.

Figure 4. Hierarchical representation automatically generated
from the scene shown in Fig. 3.

posed of one weight and, therefore, only one cluster
belongs to it. The final n-ary tree representing the objects
of the scene is shown in Fig. 2(bottom).

In sum, the proposed hierarchical clustering algorithm
has a worst-case complexity of 0 (N210gN) and a best-
case one of 0 (NlogN).

3 Experimental Results

The proposed algorithm has been tested with a set of
synthetic scenes. The first scene, shown in Fig. 3, corre-
sponds to an office that contains 14 objects. The
hierarchical representation (n-ary tree) generated by the
proposed technique is shown in Fig. 4. Notice that some
intuitive geometric relationships between the objects of
the scene emerge from that grouping. For example, each
chair is grouped with its corresponding table. The objects
on each table (lamps, computers) are grouped with their
corresponding ensembles (tablekhair) at a higher level
of abstraction. The three sets of tables near the black-
board and the latter are grouped under the same cluster.
At the first level of the tree there are three elements: two
clusters, which correspond to the two distinctive areas in

Figure 6. Smallest bounding spheres of clusters at levels 3 ,2 and
1 in the generated hierarchical representation for the scene
shown in Fig. 3.

the office, and the door. These three elements at the first
level of the tree reflect the overall structure of the scene.

The bounding spheres associated with the objects of
the scene are shown in Fig. 5. These spheres correspond
to the leaves of the generated hierarchical representation.
Fig. 6 shows the smallest bounding spheres correspond-
ing to the clusters at the three deepest levels in the
generated hierarchy. The root of the tree is a cluster con-

1362

Figure 7. Example of a scene containing 62 objects and the
clusters obtained by the proposed algorithm at the different
levels of the final tree.

taining the bounding sphere of the whole scene. The
CPU time to compute the final n-ary tree for the previous
example was 0.01 sec. on a SGI Indigo XI.

Fig. 7 shows an example of a scene containing 62
objects and the smallest bounding spheres corresponding
to the obtained clusters at the different levels of the final
hierarchy shown in Fig. 8. At the deepest levels of the
tree, the rocket and the fences around it are grouped (lev-
els 6 to 9). The various parts of the windmill are then
grouped at levels 4 to 6. The different parts of the win-
dows of the house are grouped at levels 2 and 3. Finally,
the house (a single bounding sphere) with the windows
and neon sign, and the cluster of objects beside the house
are grouped at the root level. The CPU time to generate
this hierarchy was 0.02 sec.

The proposed technique has been compared to a ver-
sion of the algorithm presented by Xavier [8],
considering worst-case conditions for both algorithms,

Figure 8. Hierarchical representation automatically generated
from the scene shown in Fig. 7 with the proposed algorithm.

Figure 9. Hierarchical representation automatically generated
from the scene shown in Fig. 7 through Xavier’s algorithm.

i.e. when no heuristic optimizations are applied. In par-
ticular, no careful tuning of the user-defined parameters
required by [8] has been done and no space partitioning
has been considered. The reason for the former is that no
hints are given for deciding the values of those parame-
ters in order to obtain optimal performance. The
motivation for not applying space partitioning is that the
performance achieved with it is strongly related to the
choice of the aforementioned user-defined parameters.
Since no optimal parameter tuning can be granted in gen-
eral, the space partition may not help to improve
efficiency and may even lead to performance degradation
owing to the overload due to generation and management
of the data structure.

Qualitatively, the algorithm presented in [SI produces
results comparable to the ones obtained with the pro-
posed algorithm. For instance, Fig. 9 shows the binary
tree produced by Xavier’s algorithms in 0.05 sec. when it
is applied to the scene shown in Fig. 7. Moreover, the
asymptotic costs are the same, when the worst and best
cases of both algorithms are considered. In order to com-
pare the actual performance of the untuned versions of
both the proposed and Xavier’s algorithms, much larger
scenes were synthetically generated. Those scenes con-
tained randomly placed spheres of similar radius. The
CPU times to compute the hierarchical representations
with both techniques are shown in Fig. 10.

1363

* untuned Xavier ’s algorithm
o untuned uroaosed alnorithm

* p
f

Figure 10. Comparison of performance between untuned
versions of both the proposed and Xavier’s algorithms. Scene
objects are spheres of similar size randomly placed in space.

Every time a new cluster is created, Xavier’s algorithm
recomputes the costs between the bounding volume of
that cluster and the other objects of the scene (both indi-
vidual objects and already existing clusters). In order to
speed-up the process, a dynamic threshold that deter-
mines a maximum accepted size is kept. All the objects
whose size is larger than that threshold are discarded
from the computation of the cost function at that step.
This dynamic threshold is progressively increased. In the
worst case, where all the objects have the same size, this
dynamic threshold does not discard any objects. More-
over, every time a pair of objects is grouped, the cost
between the new formed object and the previous ones
must be recomputed and the new object must be inserted
in the sorted list of candidate object pairs.

Conversely, the most expensive part of the proposed
algorithm is the computation of costs between all the
objects of the scene, but this stage is applied only once,
just before the generation of the MST. The remaining
stages are very efficient, leading to a better performance
of the whole algorithm. Obviously, a careful tuning of
parameters and the application of space partitioning
would improve the performance of Xavier’s technique,
but optimal tuning may be difficult to achieve in practi-
cal situations.

4 Conclusions

A new technique for generating a hierarchical repre-
sentation of the objects of a scene has been presented.
The proposed technique is composed of four stages. The
first stage computes the cost of grouping all the pairs of
objects in the scene and generates an adjacency graph
with those costs. Then, the minimum spanning tree
(MST) of that graph is determined. A binary clustering
tree (BCT) is obtained from the MST. The final stage
generates an n-ary tree by merging clusters of the BCT

according to a clustering of the costs associated with the
edges of the MST.

The proposed technique is advantageous with respect
to previous work since: (I) efficiency is greatly
improved as the costs among the objects of the scene are
computed only once, (2) there are no explicit user-
defined parameters or thresholds to be carefully tuned
and (3) the trees are n-ary instead of binary (they are
shallower).

Further work will consist of the improvement of the
first stage in order to avoid the computation of the costs
among all the objects of the scene through the applica-
tion of space partition techniques that prevent distant
objects from being considered. Different bounding vol-
umes will also be analyzed. The application of the
proposed technique for speeding-up path planning and
collision avoidance algorithms will also be studied.

We thank Jaume Gratacos Prats for providing the code
that generates the VRML spheres shown in the examples.
The images of trees shown in the examples have been
generated with daVinci, a public graph visualization soft-
ware developed at the University of Bremen (Germany).

References

K. Rosen, Discrete Mathematics and its Applications.
McGraw-Hill, Inc., New York, second edition, 1990.
J.Pitt-Francis and R. Featherstone, “Automatic
Generation of Sphere Hierarchies from CAD Data”,
IEEE Int. Con$ on Robotics and Automation,
Leuven, Belgium, May 1998,324-329.
S. Quinlan, “Efficient Distance Computation
Between Non-Convex Objects”, IEEE Int. Con$ on
Robotics and Automation, San Diego, USA, May

B. Martinez, A. delPobil and M. Pkrez, “Very Fast
Collision Detection for Practical Motion Planning
Part I: The Spatial Representation”, IEEE Int. Con$
on Robotics and Automation, Leuven, Belgium, May

S. Cameron, “Efficient Bounds in Constructive Solid
Geometry”, IEEE Computer Graphics &
Applications, May 199 1, 68-74.
S. Gottschalk, M. C. Lin and D. Manocha, “OBB-
Tree: A Hierarchical Structure for Rapid Interference
Detection”, ACM Siggraph’96.
M. A. Garcia, “A Hierarchical World-Model
Representation Supporting Heterogeneous
Multisensory Integration”, Int. Con$ on Advanced
Robotics, Sant Feliu de Guixols, Spain, September

P. Xavier, “A Generic Algorithm for Constructing
Hierarchical Representations of Geometric Objects”,
IEEE Int. Con$ on Robotics and Automation,
Minneapolis, Minnesota, April 1996, 3644-365 1.

1994,3324-3329.

1998,624-629.

1995,461-471.

1364

