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Abstract 

This paper describes an efficient technique for  com- ' 
puting a hierarchical representation of the objects 
contained in a complex 3 0  scene. First, an adjacency 
graph keeping the costs of grouping the different pairs of 
objects in the scene is  built. Then the minimum spanning 
tree (MST) of that graph is determined. A binary cluster- 
ing tree (BCT) is obtained from the MS'I: Finally, a 
merging stage joins the adjacent nodes in the BCT which 
have similar costs. The final result is an n-ary tree which 
defines an intuitive clustering of the objects of the scene 
at different levels of abstraction. Experimental results 
with synthetic 3 0  scenes are presented. 

1 Introduction 
Keeping an efficient representation of the environment 

where a robot operates is an important issue in order to 
guarantee the effective application of many algorithms, 
including path planning and collision avoidance. Hierar- 
chical models are such efficient representations as they 
allow the description of complex geometric structures at 
different levels of resolution through the use of basic 
geometric primitives, such as boxes and spheres. 

Hierarchical structures haven been proposed in the 
world modeling literature for two main purposes. The 
first purpose has been the representation of individual 
objects (intra-object representation) through hierarchies 
of boxes (e.g., [5][6][7]) or circles and spheres (e.g., 
[2][31[41). The second purpose, which has received less 
attention, has been the representation of the different 
objects of a scene (inter-object representation) through 
hierarchies of spheres or convex-hulls. Previous work in 
this line is reviewed in [8]. 

Those two types of hierarchical representations are 
structurally similar but semantically quite different. 
Intra-object representations pursue the description of sin- 
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gle objects with different approximation errors. Each 
level of the hierarchy contains a set of geometric primi- 
tives that approximate the original object at a certain 
error. 

Inter-object representations aim at grouping the 
objects of a scene into clusters that reflect the spatial dis- 
tribution of the objects and, ideally, unveil the functional 
organization of the scene. For example, an ideal objec- 
tive might be to group the objects lying on a table into 
one cluster, then those objects, the table and the chairs 
around it into a new cluster, then the latter and other 
clusters corresponding to pieces of furniture inside the 
room into a single cluster, and so forth. Both inter-object 
and intra-object representations are complementary. 
Thus, each leaf of an inter-object representation can well 
be the root of an intra-object representation describing 
the corresponding object. 

Intra-object representations usually apply a refinement 
(top-down) algorithm that subdivides larger geometric 
primitives into smaller ones until an approximation error 
is satisfied. This error-based approach can also be 
applied to building inter-object representations, by con- 
sidering that the goal is the approximation of a large 
object with a certain error. However, a scene is conceptu- 
ally different to an object in the sense that the latter has 
physical continuity while the former will usually contain 
isolated parts (individual objects) separated by empty 
space of arbitrary size. The extraction of an intra-object 
representation as it is understood (the geometric primi- 
tives at the same level cover the whole object), would 
lead to the generation of primitives even for covering the 
regions of empty space in the scene. 

A more suitable algorithm for extracting inter-object 
representations was proposed in [8]. It is based on a bot- 
tom-up strategy that starts with the bounding volumes 
(e.g., spheres, convex hulls) of all the objects in the scene 
and groups them into bigger bounding volumes by apply- 
ing heuristic rules that favor the progressive growth of 
those volumes. The algorithm goes over all the possible 
pairings of objects in the scene and for those whose dis- 
tance is below a certain moving threshold (progressively 
larger) it computes a grouping cost. The pair of objects 
with lowest cost is grouped and the costs between the 

0-7803-51 80-0-5/99 $10.00 0 1999 IEEE 1359 



new and the old clusters are recomputed. The algorithm 
stops when a single cluster is left. Thus, a binary tree is 
generated. 

At each iteration, the cost function defined in [8] takes 
into account three heuristics that favor the grouping of 
the candidate pair of objects (or clusters) whose bound- 
ing volume has: (I) the smallest volume, (2) the smallest 
amount of empty space inside and (3) the most similar 
ratio between the size of the two objects (or clusters) that 
constitute that candidate pairing. The cost function is 
defined by a weighted average of those three criteria. 

This paper presents a more efficient approach to the 
problem of inter-object grouping. Similarly to [8], the 
algorithm starts with the bounding volumes of the 
objects contained in the scene and clusters them into a 
tree. However, the proposed algorithm is more advanta- 
geous than the one presented in [8] since: (I) efficiency 
is higher as the costs between all objects of the scene are 
computed once, (2) there are not user-tuned parameters 
or thresholds and (3) the generated tree is n-ary instead 
of binary and, thus, it is shallower. 

The proposed algorithm is described in section 2. Sec- 
tion 3 shows experimental results and a comparison with 
the technique described in [8]. Section 4 gives conclu- 
sions and further improvements. 

2 Hierarchical Clustering of Scene Objects 

An efficient algorithm is presented for generating a 
hierarchical clustering of the objects of a complex scene. 
The algorithm follows a bottom-up strategy that starts 
with the bounding spheres of the objects in the scene and 
progressively clusters them to produce an n-ary tree. The 
bounding spheres are allowed to overlap. Each node of 
the tree represents a level of abstraction in the scene and 
has associated the bounding sphere that contains all the 
bounding spheres that correspond to the clusters (or 
objects) below that node. 

The algorithm is composed of four stages. First, an 
adjacency graph keeping the costs of grouping the differ- 
ent pairs of objects in the scene is built. Then the 
minimum spanning tree (MST)  of that graph is obtained. 
From the MST, a binary clustering tree (BCT) is defined. 
Finally, a merging stage joins those adjacent nodes in the 
BCT that have similar costs. The final result is an n-ary 
tree which defines an intuitive clustering of the objects of 
the scene at different levels of abstraction. These stages 
are described below. 

2.1 Adjacency Graph Generation 

Let S be the set of N bounding spheres associated with 
the N objects of a scene. Let si and sj be two bounding 
spheres contained in S and ri and r . their corresponding 
radius. Let d . .  be the distance between the centers of Si 
and s,. Finally, let rij be the radius of the smallest 
bounding sphere, si j ,  which contains si and s j .  

J 
Y 

The attraction between Si and S. is defined as 
a.. = r . r . / d  ... The bigger and closer the two spheres 

JJ J JJ 
are, the larger their attraction will be. Intuitively, spheres 
with large attractions should tend to be grouped into the 
same clusters as they would denote close objects. 

However, if the clustering algorithm only took the pre- 
vious attraction into account, the size of the resulting 
cluster would not be considered, and that could lead to 
big clusters being created from the beginning of the bot- 
tom-up clustering process. Since this process is intended 
to create a hierarchy in which the leaves, which are the 
initial spheres in S, are progressively grouped until 
obtaining the scene’s bounding sphere at the root of the 
tree, a more appropriate strategy will be to favor that 
small clusters are created first. This policy, which was 
already applied in [8], favors the generation of balanced 
trees. In our case, this policy is applied by defining a cost 
function that increases the cost of grouping two spheres 
of high attraction when the volume of their smallest 
bounding sphere is very big. This cost function is defined 
as <.. = r?./ a . . .  

The first stage of the hierarchical clustering algorithm 
defines a fully connected weighted graph with as many 
nodes as objects in the scene and an edge joining each 
pair of nodes. Each edge has associated a weight which 
corresponds to the cost of grouping the spheres repre- 
sented by the two nodes joined by this edge according to 
the previous cost function 5 , .  The number of edges, and 
thus the cost of creating this graph is 0 ( N2). As in [8], 
assuming that each object cannot merge with more than a 
constant number k of bodies the number of edges in the 
graph becomes O ( N ) .  Moreover, if a space partition 
technique was utilized that graph could be built in 0 (N) 
time. 

2 J 
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2.2 Minimum Spanning Tree Generation 
Given the previous adjacency graph, the next objective 

is the generation of a hierarchy (tree) of nodes whose 
edges have a minimum cost. This is done by computing 
the minimum spanning tree of the previous adjacency 
graph. The minimum spanning tree (MST) of a graph G 
is the acyclic subgraph of G that contains all the nodes of 
G and such that the sum of the costs associated with its 
edges is minimum. The MST of a graph with M edges 
and N vertices can be efficiently computed in 0 ( M l o g N )  
by appl ing Kruskal’s algorithm [ 11. In our case, the cost 

and 0 (NlogN) for the best case (k neighbors plus space 
partitioning). Fig. l(left) shows an example of a con- 
nected adjacency graph and its MST. 

2.3 Binary Clustering Tree Generation 
The minimum spanning tree of the adjacency graph is 

not directly used to define a clustering of the objects in 
the scene since, to start with, the root of the tree is not 
defined. Therefore, a first clustering is done by con- 

is 0 ( N  tl logN) for the worst case (fully connected graph) 
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4.1 

- Minimum Spanning Tree 

Figure 1. (leff) Example of adjacency graph and its MST. 
(right) Binary clustering tree obtained from the previous MST. 

structing a binary clustering tree (BCT) from the MST. 
The BCT is generated by considering the edges from the 
MST in ascending order of weight. Each considered edge 
E leads to a new cluster being added to the BCT. The 
new cluster embodies the clusters that contain the two 
nodes connected by E,  if those clusters exist. The weight 
(cost function) associated with E is assigned to the new 
cluster. Each cluster is associated with the smallest 
bounding sphere that contains the bounding spheres of 
the nodes or clusters contained in it. The cost of comput- 
ing the BCT from the MST is 0 (NlogN) 

This process is illustrated with the MST shown in Fig. 
I(left). The obtained BCT is shown in Fig. I(right). The 
first edge is the one joining nodes G and D, as its weight 
is the lowest (3.7). Thus, a first cluster, G-D, is formed. 
The second edge in ascending order is the one joining 
nodes A and C (weight 4). A new cluster, A-C, is cre- 
ated. The third edge is the one joining nodes D and E 
(weight 4.1). Since D already belongs to a cluster, G-D, a 
new cluster, G-D-E, is formed by grouping node E and 
cluster G-D. The final edge is the one joining nodes D 
and F (weight 10.3). Since both nodes belong to two 
clusters at that time (G-D-E and F-H-A-C-B), the root is 
finally cluster G-D-E-F-H-A-C-B. Each cluster is labeled 
with the weight of its corresponding edge. 

2.4 Cluster Merging 

The previously obtained BCT is already a solution to 
the clustering of the initial objects in the scene. However, 
binary trees do not always reflect the real structure of the 
objects of a scene, where a cluster may contain several 
objects at the same level. Moreover, binary trees tend to 
become very deep. Hence, n-ary trees in which a cluster 
can contain two or more clusters or nodes appear to be a 
more appropriate solution. 

The final stage of the proposed algorithm converts the 
BCT into an n-ary tree in 0 ( N )  time by merging com- 
patible clusters. In order to do this, the weights 
associated with the clusters in the BCT are partitioned 
into a set of families. Each family of weights denotes a 
set of objects which have similar grouping cost. After the 
MST generation stage, a list of the weights associated 
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Figure 2. (top) Merging process applied to the clusters of the 
BCT shown in Fig. l(n'ght). (bottom) Final structure. 

with the edges of the MST sorted in ascending order is 
obtained. The first two weights in this list define the first 
family of weights F o .  Let CL, and oi be the mean and 
standard deviation of the weights that belong to a certain 
family of weights F, . A weight w is considered to belong 
to the family F i  if w < li + 2oi. If a weight is assigned 
to a family, the mean and standard deviations of the latter 
are recomputed. 

Starting with the third weight in the sorted list, the first 
family Fo is increased with new weights until a weight 
is found not to belong to Fo according to the previous 
criterium. This weight and the next one are the seed for a 
new family F1 . This grouping process ends up when all 
the weights in the sorted list have been considered, giv- 
ing rise to a set o f f  families. For example, given the 
weights shown in the example of Fig. 1, three families 
would be obtained: Fo = { 3.7,4,4.1,4.8}, 
F 1  = {7.1,7.3} and F2 = { 10.3). 

Once the families of weights have been found, the 
BCT is converted to an n-ary tree by merging adjacent 
clusters whose weights belong to the same family. This is 
illustrated in Fig. 2(top). The first family of weights, Fo , 
gives rise to clusters G-D and G-D-E being joined in a 
single cluster as they have weights that belong to F o .  
Similarly, but in a different part of the tree, clusters A-C 
and A-C-B are also joined. Then, family F ,  leads to the 
merging of clusters F-H and F-H-A-C-B, as their corre- 
sponding weights belong to F ,  ~ Finally, family F2 does 
not lead to any clusters being joined as it is only com- 
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Figure 5.  Original objects and their bounding spheres. 

Figure 3. Example of a 3D scene and labels of the different 
nodes (objects) contained in it. 

Figure 4. Hierarchical representation automatically generated 
from the scene shown in Fig. 3. 

posed of one weight and, therefore, only one cluster 
belongs to it. The final n-ary tree representing the objects 
of the scene is shown in Fig. 2(bottom). 

In sum, the proposed hierarchical clustering algorithm 
has a worst-case complexity of 0 (N210gN) and a best- 
case one of 0 (NlogN). 

3 Experimental Results 

The proposed algorithm has been tested with a set of 
synthetic scenes. The first scene, shown in Fig. 3, corre- 
sponds to an office that contains 14 objects. The 
hierarchical representation (n-ary tree) generated by the 
proposed technique is shown in Fig. 4. Notice that some 
intuitive geometric relationships between the objects of 
the scene emerge from that grouping. For example, each 
chair is grouped with its corresponding table. The objects 
on each table (lamps, computers) are grouped with their 
corresponding ensembles (tablekhair) at a higher level 
of abstraction. The three sets of tables near the black- 
board and the latter are grouped under the same cluster. 
At the first level of the tree there are three elements: two 
clusters, which correspond to the two distinctive areas in 

Figure 6. Smallest bounding spheres of clusters at levels 3 ,2  and 
1 in the generated hierarchical representation for the scene 
shown in Fig. 3. 

the office, and the door. These three elements at the first 
level of the tree reflect the overall structure of the scene. 

The bounding spheres associated with the objects of 
the scene are shown in Fig. 5. These spheres correspond 
to the leaves of the generated hierarchical representation. 
Fig. 6 shows the smallest bounding spheres correspond- 
ing to the clusters at the three deepest levels in the 
generated hierarchy. The root of the tree is a cluster con- 
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Figure 7. Example of a scene containing 62 objects and the 
clusters obtained by the proposed algorithm at the different 
levels of the final tree. 

taining the bounding sphere of the whole scene. The 
CPU time to compute the final n-ary tree for the previous 
example was 0.01 sec. on a SGI Indigo XI. 

Fig. 7 shows an example of a scene containing 62 
objects and the smallest bounding spheres corresponding 
to the obtained clusters at the different levels of the final 
hierarchy shown in Fig. 8. At the deepest levels of the 
tree, the rocket and the fences around it are grouped (lev- 
els 6 to 9). The various parts of the windmill are then 
grouped at levels 4 to 6. The different parts of the win- 
dows of the house are grouped at levels 2 and 3. Finally, 
the house (a single bounding sphere) with the windows 
and neon sign, and the cluster of objects beside the house 
are grouped at the root level. The CPU time to generate 
this hierarchy was 0.02 sec. 

The proposed technique has been compared to a ver- 
sion of the algorithm presented by Xavier [8], 
considering worst-case conditions for both algorithms, 

Figure 8. Hierarchical representation automatically generated 
from the scene shown in Fig. 7 with the proposed algorithm. 

Figure 9. Hierarchical representation automatically generated 
from the scene shown in Fig. 7 through Xavier’s algorithm. 

i.e. when no heuristic optimizations are applied. In par- 
ticular, no careful tuning of the user-defined parameters 
required by [8] has been done and no space partitioning 
has been considered. The reason for the former is that no 
hints are given for deciding the values of those parame- 
ters in order to obtain optimal performance. The 
motivation for not applying space partitioning is that the 
performance achieved with it is strongly related to the 
choice of the aforementioned user-defined parameters. 
Since no optimal parameter tuning can be granted in gen- 
eral, the space partition may not help to improve 
efficiency and may even lead to performance degradation 
owing to the overload due to generation and management 
of the data structure. 

Qualitatively, the algorithm presented in [SI produces 
results comparable to the ones obtained with the pro- 
posed algorithm. For instance, Fig. 9 shows the binary 
tree produced by Xavier’s algorithms in 0.05 sec. when it 
is applied to the scene shown in Fig. 7. Moreover, the 
asymptotic costs are the same, when the worst and best 
cases of both algorithms are considered. In order to com- 
pare the actual performance of the untuned versions of 
both the proposed and Xavier’s algorithms, much larger 
scenes were synthetically generated. Those scenes con- 
tained randomly placed spheres of similar radius. The 
CPU times to compute the hierarchical representations 
with both techniques are shown in Fig. 10. 
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Figure 10. Comparison of performance between untuned 
versions of both the proposed and Xavier’s algorithms. Scene 
objects are spheres of similar size randomly placed in space. 

Every time a new cluster is created, Xavier’s algorithm 
recomputes the costs between the bounding volume of 
that cluster and the other objects of the scene (both indi- 
vidual objects and already existing clusters). In order to 
speed-up the process, a dynamic threshold that deter- 
mines a maximum accepted size is kept. All the objects 
whose size is larger than that threshold are discarded 
from the computation of the cost function at that step. 
This dynamic threshold is progressively increased. In the 
worst case, where all the objects have the same size, this 
dynamic threshold does not discard any objects. More- 
over, every time a pair of objects is grouped, the cost 
between the new formed object and the previous ones 
must be recomputed and the new object must be inserted 
in the sorted list of candidate object pairs. 

Conversely, the most expensive part of the proposed 
algorithm is the computation of costs between all the 
objects of the scene, but this stage is applied only once, 
just before the generation of the MST. The remaining 
stages are very efficient, leading to a better performance 
of the whole algorithm. Obviously, a careful tuning of 
parameters and the application of space partitioning 
would improve the performance of Xavier’s technique, 
but optimal tuning may be difficult to achieve in practi- 
cal situations. 

4 Conclusions 

A new technique for generating a hierarchical repre- 
sentation of the objects of a scene has been presented. 
The proposed technique is composed of four stages. The 
first stage computes the cost of grouping all the pairs of 
objects in the scene and generates an adjacency graph 
with those costs. Then, the minimum spanning tree 
(MST) of that graph is determined. A binary clustering 
tree (BCT) is obtained from the MST. The final stage 
generates an n-ary tree by merging clusters of the BCT 

according to a clustering of the costs associated with the 
edges of the MST. 

The proposed technique is advantageous with respect 
to previous work since: (I) efficiency is greatly 
improved as the costs among the objects of the scene are 
computed only once, (2) there are no explicit user- 
defined parameters or thresholds to be carefully tuned 
and (3) the trees are n-ary instead of binary (they are 
shallower). 

Further work will consist of the improvement of the 
first stage in order to avoid the computation of the costs 
among all the objects of the scene through the applica- 
tion of space partition techniques that prevent distant 
objects from being considered. Different bounding vol- 
umes will also be analyzed. The application of the 
proposed technique for speeding-up path planning and 
collision avoidance algorithms will also be studied. 

We thank Jaume Gratacos Prats for providing the code 
that generates the VRML spheres shown in the examples. 
The images of trees shown in the examples have been 
generated with daVinci, a public graph visualization soft- 
ware developed at the University of Bremen (Germany). 
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