
Proceedings of the 1997 IEEE
International Conference on Robotics and Automation

Albuquerque, New Mexico - April 1997

Fast Generation of Adaptive Quadrilateral Meshes from Range Images

Miguel Angel Garcia$ Angel Doming0 Sappa? Luis Basaiiezt

Department of Software (Computer Graphics Section)
Institute of Cybernetics

Polytechnic University of Catalonia
Diagonal 647, planta 8.08028 Barcelona, SPAIN

fax: +34 3 401 60 50, E-mail: garcia@turing.upc.es

Abstract

This paper proposes a fast technique for generating
adaptive quadrilateral meshes from range images with no
optimization. The obtained meshes adapt to the features of
the input images by concentrating points in areas of high
curvature and by dispersing them in low variation
regions. This leads to more accurate approximations of
the given range images than when uniform sampling with
the same number of points is applied. Experimental
results with real range images representing both free-form
and polyhedral and cylindrical objects are presented.

1 Introduction

Range sensors are becoming a popular way of obtaining
3D information in robotics owing to the development of
low-cost devices able to provide dense images at high
speeds [9]. However, the processing of dense range
images containing hundreds of thousands of pixels is still
costly and difficult to apply to real-time applications.

One way of speeding up the processing of range images
consists of reducing the amount of data contained in the
images while keeping enough details that allow the appli-
cation of further algorithms, such as segmentation or
shape recognition. This can be done by removing points in
areas of low variation and keeping them in areas of high
curvature. In general, the objective becomes the genera-
tion of a mesh that approximates the given range image
with fewer data points. Further processing algorithms can
then be applied to that mesh instead of to the dense range
image directly [8].

Meshes generated from range images can be either reg-
ular (quadrilateral) or irregular. Irregular meshes do not
impose any conditions upon the distribution of the data
points they hold. Therefore, they allow the representation
of both scattered and regularly distributed points in space.

This work has been partially supported by the Government of Spain
under the CICYT project TAP96-0868. The second author has been
supported by the Spanish Agency for International Cooperation and the
National University of La Pampa (Argentina).

Among them, irregular triangular meshes are a widely-
used representation owing to the availability of efficient
triangulation algorithms. Several iterative optimization
techniques have been proposed for approximating range
images by triangular meshes (e.g., [2][10]). A faster
approach which avoids such costly optimizations was pro-
posed by Garcia [6].

Quadrilateral meshes are a less flexible data representa-
tion compared to irregular meshes, since they require that
the data points are distributed in rows and columns. How-
ever, quadrilateral meshes are convenient and sometimes
necessary for different applications, for example, for esti-
mating the surfaces of the original objects contained in the
image by applying tensor-product B-splines or NURBS,
which are the “de facto” standard for free-form surface
modeling in CAD/CAM. Although many techniques have
been devised for reconstructing surfaces from irregular
meshes (e.g., [7]) , they are unable to perform as good as
tensor-product methods. Besides, it is always possible to
obtain a triangular mesh from a quadrilateral one by split-
ting each rectangular cell into two triangles. This
argument and the existence of algorithms that work with
quadrilateral meshes (e.g., [4] [5]) justify the utility of
generating quadrilateral meshes from range images.

The simplest way of generating a quadrilateral mesh
from a range image is by sampling that image at specific
intervals both horizontally and vertically. However, this
process produces aliasing effects, since details in the
image between two sampled points will be ignored. Thus,
the objective is the generation of non-uniform quadrilat-
eral grids, that vary their point density depending on the
amount of information (details) present in the image. The
underlying goal is to be able to capture more information
with the same amount of data points.

Similarly to the irregular case, previous methods for
generating adaptive quadrilateral meshes from range
images are based on iterative optimization techniques.
Variational formulations and elastic models are some
examples (e.g., [1][111). A recent algorithm segments the
given image into patches and fits quadrilateral meshes to
each patch [3]. However, those previous techniques are

0-7803-361 2-7-4/97 $5.00 @ 1997 IEEE 281 3

computationally costly. Therefore, their application to
fields with real-time requirements, such as robotics, may
be more complicated.

This paper presents a fast technique for generating
adaptive quadrilateral meshes from range images with no
optimization. The aim is the generation of a quadrilateral
mesh with a user-specified number of rows and columns
so that the distribution of the points is better than a uni-
form distribution, in the sense that, with the same number
of points in the mesh, the range image can be approxi-
mated keeping more details.

The proposed method divides the original range image
into a set of rectangular regions or tiles. For each tile, an
adaptive quadrilateral mesh is generated considering the
curvature associated with the tile's image, such that points
tend to concentrate in high-curvature areas and to disperse
in low variation regions. Since each tile can be processed
independently, the algorithm can benefit from the applica-
tion of parallel architectures. Contrary to the randomized
method proposed in [6] , the new algorithm is fully deter-
ministic given the number of rows and columns desired
for each tile. The algorithm is described in section 2. Sec-
tion 3 gives experimental results with images containing
both free-form and planar and cylindrical objects. Finally,
conclusions are given in section 4.

2 Adaptive Quadrilateral Mesh Generation

A range image is a sampling, usually rectangular, of a
scene surface. Its usual representation is a two dimen-
sional array R, where each array element R (r , c) is a
scalar that represents a surface point of coordinates:
(x,y,z) = (f,(r), fy(c), fz(R (r , c))) referred to a local coor-
dinate system. The definition off,, f,, and fz depends on the
properties of the actual range sensor being utilized. In
general, R (r , c) can be considered to be the distance
between a surface point and a given reference plane which
is orthogonal to the axis of the sensor and placed opposite
to it at a specified distance. Invalid points in the image
will be considered to have the background value p.

This section presents an algorithm for generating a
quadrilateral mesh that approximates a given range image
adaptively. The algorithm consists of two main stages.
The first stage filters small gaps and computes a curvature
estimation of the whole range image. Then, the second
stage divides the range image into a user-specified number
of equal-sized rectangular regions or tiles. Taking into
account the previous curvature estimation, an adaptive
quadrilateral mesh, with a user-specified number of rows
and columns, is independently generated for every tile.
Finally, the meshes generated for every tile are recom-
bined into a' final mesh which approximates the given
range image. These stages are described below.

2.1 Gap Filling and Curvature Estimation

Given a range image R with R rows and C columns, a
first stage of the algorithm removes single pixel gaps. This
is done by substituting every background pixel sur-
rounded by non-background pixels for the average of
those neighbors. Let S (r , c) be the set of non-background
pixels that surround a given pixel R (r, c) ,

Then, a filtered range image Rf(r, c) is computed as
the average of all the pixels belonging to S (r, c) .

This produces a filtered range image which compen-
sates for sensing errors leading to undesired single-pixel
gaps. Gaps larger than one pixel have not been removed in
considering that they are real gaps in the sensed 3D sur-
face. Notwithstanding, the previous filtering can be
successively applied to remove larger gaps if necessary.
An optional filtering of the whole range image, by apply-
ing the same procedure to non-background pixels, can
also be utilized in case of noisy range images. However, it
has been discarded in our current implementation since it
did not lead to significative improvements of the final
mesh for the range images we have tested and also due to
its tendency to remove details, such as sharp edges. This
aspect is negative since the rest of the algorithm relies on
the existence of distinctive features that determine the
density of points of the final mesh. The problem can be
overcome by applying multiresolution analysis (wavelets)
instead of by simply averaging neighboring points.

From the filtered range image Rf(r, c), a curvature
image K (r , c) is computed. K (r , c) is a function of the
curvature associated with the pixel corresponding to
Rf(r, c). K (r , c) is generated by merging the estimations
of the curvature components along the horizontal K,, and
vertical K,, directions of the image. First, two initial esti-
mations are calculated,

R

c

Next, a threshold operator (a > 0) is applied,

KF; I a KF, =
a otherwise

2814

Figure 1 : (le$’) Original range image (rendered). (right) Associated
curvature image.

The curvature estimation is finally calculated as the logi-
cal addition of the binary representation of the previous
terms; K (r , c) = K,, v K,, . R C

According to this formulation, K (r , c) is a scalar vary-
ing between zero and a. The larger that value is, the larger
the curvature at Rf(r, c) is. Parameter a has been set to
255 in order to store the curvature estimation as an 8-bit
image while keeping enough resolution. Background pix-
els have been given a constant curvature value to
guarantee that background regions are sampled and to pre-
vent large concentrations of points at jump edges-as a
quadrilateral mesh is sought, the background must also be
covered. Actual background curvature settings are
described in section 3.

With this approach, pixels with high values of K (r , c)
correspond to areas with high surface variation. On the
contrary, pixels with K (r , c) equal to zero correspond to
planar regions. As in [6], the aim is to make the point den-
sity of the final mesh in a certain region of the range
image be proportional to the curvature associated with the
pixels of that region. Thus, points will tend to concentrate
in high-variation areas, ensuring that details present in
those areas are accounted for.

Fig. 1 shows a range image and its associated curvature
image according to this technique. Black areas represent
high curvature and white areas planar regions.

2.2 Range Image Tessellation

Both the filtered range image Rf (r , c) and its curvature
estimation K (r , c) are partitioned into equal-sized rectan-
gular tiles. Later on, an adaptive quadrilateral mesh will
be independently defined for every tile. In this way, the
density of points is locally adjusted to the shape of differ-
ent regions of the image. That process can be run in
parallel, taking advantage of high-performance
architectures.

The number H of horizontal and V of vertical partitions
of the range image (and its associated curvature image) is
an input parameter of the algorithm.

A window Wvh , V E [O , V - l l , h ~ [O , H - I] , is
defined by two 2D points: an upper-left corner
(ulr,,, ulc,,) and a bottom-right corner (brr,,, brc,,).
Their coordinates are computed as:

ulc,, = h R
V H

ulr,, = - v

R
brr,, = [v - (v + l) v < v - 1

‘ R - 1 v = v - I

g (h + l) h < H - l

c- 1 h = H - l

A window W,, determines a tile (rectangular region) in
the range image. The next stage of the algorithm com-
putes an adaptive quadrilateral mesh for every tile
independently. Adjacent windows (and therefore tiles)
have an overlap of one line of pixels. Hence, the bound-
aries of the quadrilateral meshes generated for adjacent
tiles will coincide.

2.3 Adaptive Mesh Generation

Let R,, (r’, c’) be the range image tile defined by a
window W,, when the latter is applied to the filtered
range image Rf (r, c):

R,, (r’, c’) = R f (r’ + ulr,,, c’ + uk,,)

The two parameters (r’ , c’) are local to the tile:
r’ E [0, R / V] , c’ E [0, C / H] . Let also K,, (r’, c’) be

the curvature image tile defined by the same window on
the curvature image K (r , c). The objective now is the
definition of a quadrilateral mesh which adapts to the sur-
face contained in R,, (r’, c’) based on its corresponding
curvature estimation K,, (r’, c’) . Notice that each tile can
be considered to be a small range image with its corre-
sponding curvature estimation.

For every image tile R,, (r’, c’) , an adaptive quadrilat-
eral mesh HVS,, (i , j) with rows and < columns is
generated. The number of rows and columns of that mesh
is an input parameter of the algorithm and determines the
number of rows and columns of the mesh corresponding
to the whole range image.

Given the image tile R,, (r‘ , c‘) and its associated cur-
vature estimation K,, (r‘, c’) , two steps are necessary to
generate a quadrilateral mesh. The first stage generates 6
vertical curves that adapt to the shape of the image tile.
These curves tend to approach in areas of high curvature
and to disperse in low-variation regions. The second stage
samples each of these curves at R different points, so that
the points also tend to concentrate in high-curvature areas
and to disperse in low-variation ones. The outcome of this
stage is an R x 6 array of points for every tile. Similar

281 5

results are obtained by generating horizontal curves in the
first stage.

In order to define a collection of vertical curves that
adapt to the shape of the image tile R,, (r’ , c’) , a set of 6
pixels is selected from each row of pixels of the tile based
on its curvature estimation. This is done as follows.

Let R,, (r’, c’) , c’ E [0, C / H] and r’ fixed, be a row
of pixels and K,, (r’, c’) their corresponding curvatures.
Following the principles utilized in [6], this curvature pro-
file is mapped to an unnormalized probability density
function that expresses the probability of selecting each
pixel of the range image tile, so that pixels with high cur-
vature will have a higher chance of being selected for the
mesh. The discrete, unnormalized probability density
function fvhrt (c’) is defined by applying a transformation
function to the curvature profile:

(1) f v h / (c’> = I(Kvh (r’l c‘)

The transformation function I determines the vari-
ation of density of points with respect to a variation of
curvature. A linear variation implies that for high cur-
vature areas, the density of points is very high. This
linear behavior produced final meshes with excessive
concentration of points. However, if a logarithmic
function is used, the density of points varies more
gently. Thus, the transformation function that has been
finally chosen is

(2) I (x) = K, log x

where K , is a proportionality constant which deter-
mines the maximum value of the density function. It
has been experimentally set to 500. Alternative sub-
linear functions can also be utilized, resulting in
different point density variations. Even a customized
transfer function can be devised by utilizing B-
splines.

Next, a discrete, unnormalized probability distribution
function Fvhrt (c’) is obtained as:

C’

Fvhr‘ (c ’) = x f v h r ’ (j) - fVh# (O) (3)
i = O

If the value range of Fvhr, (c’) is sampled at 6 points
uniformly distributed, the application of the inverse distri-
bution function F-’vhr’ (y) to those points leads to a set of
5 points that are adaptively distributed according to
fvhrl (c’). This principle is illustrated in Fig. 2. In our case,
since the probability distribution corresponds to the cur-
vature estimation, the density of points will be correlated
to the curvature and, hence, to shape variations.

In order to obtain Filr , (y) given the set of 5 points y
uniformly distributed between 0 and the maximum
Fvhr, (c’), a table keeping the values Fvhr. (c’) for all the
c’ E [0, C / H] is computed. Then, a single iteration

I
1

+ c’

C adaptive samples
Figure 2: (top) An unnormalized probability density function
f(c’) that represents curvature associated with every pixel c‘.
(bottom) Uniform sampling of the range of the corresponding
~ ~ ~ r m a l i ~ e d probability distribution function F (c’) gives a set of
points whose density varies according to f(c’).

Figure 3: (left) Curvature image (right) Vertical curves computed
after adaptive horizontal sampling, with H = V = 4 and 5 = 9.

traverses this table, extracting those positions c’ such
that Fvhr,(c‘) = y . A vector of horizontal sampled
points HS,,,, U), j E [0, <) , keeping the different c’ s
is obtained in this way.

This process is repeated for every row r’ of the range
image tile Rvh (r’, c’) , producing an (R/V+ 1) x 5 array:

HS,, (r ’ , j) = HS,,,, 0’) 1 r’ E [o, R / V l j j E [o, r
For each value j , if we iterate over r ’ , we obtain a col-

lection of points (r‘ , HS,, (r’, j)) that determine a
“vertical” curve in the range image. Going over all the dif-
ferent j values, we obtain a collection of vertical curves
that tend to adapt to the shape of the underlying objects
contained in the range image, moving together in areas of
fast shape variation. Fig. 3 shows the set of vertical curves
obtained by applying this procedure to all the tiles of the
range image shown in Fig. 1, considering a tessellation in
4 by 4 tiles with 9 columns per tile (6 = 9).

Each vertical curve obtained above corresponds to one
of the columns of the final quadrilateral mesh associated
with the tile being processed. In order to obtain the rows
of the quadrilateral mesh, each of these curves is adap-

281 6

.

.

.

.

.

.

.....

.

Figure 4: (lef) Horizontal and vertical sampled points with
H = V = 4 and < = 9. (righf) Same number of points with uniform
sampling.

tively sampled at positions (K is the input parameter
that indicates the number of rows per tile). The process is
similar to the previous one, which leads to horizontal sam-
ples from rows of pixels extracted from the tile. The
difference now is that a curvature profile is obtained from
the positions of the points that belong to one of the curves
instead that from the positions corresponding to a hori-
zontal row of pixels. Again, each tile is processed
separately.

Let VCVhj (r’) = HS,, (r’,j), r’ E [0 , R / V] , repre-
sent the vertical curve corresponding to a certain
column j , j E [0, <). The 2D positions of the points
belonging to that curve are (r’, V C V y (r’)).

The unnormalized probability density function corre-
sponding to the curvature profile associated with each
curve is an adaptation of (1):
fvhj (r’) = T(Kvh (r’, VCvhj (r’))). Similarly to (3), an
unnormalized probability distribution function
FVhj(r’) is computed. Then the image space of this
distribution function is uniformly sampled with K
points y and the inverse distribution function Fihj (y)
applied to them to obtain a set of xpoints r’ such that
F V y (r ’) = y . A vector of vertical sampled points
VS,,,.(i), i E [O, R) , keeping the different r’s is
obtained in this way. In the end, we obtain an $x
array of horizontal and vertical sampled points:

In summary, given a range image tile Rvh (r ’ 7 c’) and
its associated curvature image K,, (r’, c’) , the array
HVS,, (i , j) contains the 2D coordinates (r’ , c’) of the
point selected for each row i and column j of the adaptive
quadrilateral mesh corresponding to the given tile. Fig.
4(Ze$) shows the set of vertical and horizontal sampled
points obtained for all the tiles in which the original range
image has been tessellated (4 by 4). Fig. 4(right) shows
the same number of sampled points considering uniform
sampling. In the adaptive distribution, points tend to con-
centrate in areas of high curvature, highlighting the shape
of the objects contained in the image. Notice that since the
sought mesh is rectangular, background areas are also
sampled.

In order to generate the final mesh corresponding to the
range image as a whole, the quadrilateral meshes associ-
ated with each tile are merged. By construction, the

Figure 5: (left) Uniform quadrilateral mesh with 31 x 31 points.
(right) Adaptive quadrilateral mesh with 31 x 31 points.

Figure 6: (left) Rendering of the uniform quadrilateral mesh with
31 x 31 points. (right) Rendering of the adaptive quadrilateral
mesh with 31 x 31 points. CPU generation time = 0.21 sec.

boundaries of adjacent tiles overlap. Therefore, the final
mesh will contain a total of (R- 1) V + 1 rows and (c - 1) H + 1 columns, with (x, 5) being the number of
rows and columns per tile, and (V, H) the number of
vertical and horizontal partitions of the original range
image into tiles.

This mesh is stored in a 2D array HVS which keeps,
for every position, the (r , c) coordinates of the sam-
pled points:
H V S (v (R - 1) + i , h (c - l) + j) = HVSv , (i , j) +

3 Experimental results
Fig. 5 shows a 3D view of both the uniform (left) and

the adaptive (right) quadrilateral meshes corresponding to
the range image shown in the previous figures. The pro-
portionality constant of the transformation function in (2)
was experimentally set to 500.

The curvature associated with the background pixels
was set to 5. This constant determines the density of
points sampled over background regions when these
regions join with non-background regions in a same tile.
So far, this value is heuristically set. An automatic proce-
dure is being studied that adjusts this constant
independently for every tile as a function of the overall
curvature of the non-background regions of the tile. The
aim is to sample the background uniformly and, at the
same time, not to concentrate many points in it so that
non-background areas may result undersampled.

+ (u z r v h , uzcvh)

2817

Figure 7: (top-left) Range image (399x263). (top-right) Adaptive
sampling with 55x37 points. (bottom-left) Uniform mesh. (bottom-
right) Adaptive quadrilateral mesh. CPU time = 0.82 sec.

Fig. 6 shows a rendered version of both the uniform
(left) and adaptive (right) meshes. To display a 3D solid,
quadrangular cells have been split into two triangles by
cutting each cell along the diagonal that minimizes the
error with the original range image. Notice that the uni-
form mesh exhibits artifacts along crease and jump edges.
These artifacts are reduced in the adaptive sampling.

The range image of the previous example contains 154
rows and 183 columns while the final quadrilateral
meshes (uniform and adaptive) contain 31 rows and col-
umns. The CPU time to compute the adaptive
quadrilateral mesh is 0.21 sec. using an SGI Crimson
workstation with a lOOMHz R4000 processor. A CPU
time of 0.1 sec. was measured with an SGI Indigo I1 with
a 200MHz R4400 processor.

Since the proposed technique tends to improve the
approximation of the details of the range image (jump and
crease edges, high-curvature shapes) by reducing the
aliasing effect of uniform sampling, and these features
usually represent small details in the overall range image,
the global relative error of approximation [6] does not
show big differences between the uniform and adaptive
meshes. Differences are qualitative rather than quantita-
tive. Even though, the improvement is also noticeable,
with a relative error of 0.33% for the adaptive mesh ver-
sus a 0.45% for the uniform one.

Fig. 7 shows an example of the application of this tech-
nique to a range image containing a free-form surface.
The original image has 399 rows and 263 columns. This
image is tessellated into 4x6 tiles with 10 rows and col-
umns per tile. The background curvature was set to 20.
The final mesh of 55 rows and 37 columns was generated
in 0.82 sec. (0.41 sec. with the 200 MHz SGI Indigo 11).
The relative error of the adaptive mesh is 0.26% versus
0.32% of the uniform mesh.

4 Conclusion

A fast technique for obtaining adaptive quadrilateral
meshes from range images has been presented. The gener-
ated meshes improve the quality of approximation of
quadrilateral meshes obtained through uniform sampling,
by concentrating points in areas of high curvature while
keeping the regularity constraint. The proposed technique
is fully deterministic and avoids costly iterative optimiza-
tion algorithms, making it suitable for real-time
applications. Besides, it is inherently parallel. Hence, it
can benefit from the application of parallel architectures.

An implementation of the proposed technique in C lan-
guage is available by contacting the authors.

References

R.M. Bolle and B.C. Vemuri, On three-dimensional surface
reconstruction methods, IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 13, no. 1 , pp. 1-13, Jan. 1991.
L. DeRoriani, A pyramidal data structure for triangle-based
surface description. IEEE Computer Graphics and
Applications, pp. 67-78, March 1989.
M. Eck and H. Hoppe, Automatic reconstruction of B-spline
surfaces of arbitrary topological type, SIGGRAPH ‘96, 325-
334.
P. Fillatreau, M. Devy, and R. Prajoux, Modelling of
unstructured terrain and feature extraction using B-spline
surfaces, Int. Con$ on Advanced Robotics, 1993,279-284.
H. Gagnon, M. Soucy, R. Bergevin and D. Laurendeau,
Registration of multiple views for automatic 3-D model
building, IEEE Int. Con$ on Computer Vision and Pattern
Recognition, 1994,581-586.
M. A. Garcia, Fast approximation of range images by
triangular meshes generated through adaptive randomized
sampling. IEEE Int. Con$ on Robotics and Automation,
Nagoya, Japan, May 1995,2043-2048.
M. A. Garcia and L. Basaiiez, Efficient free-form surface
modeling with uncertainty. IEEE Int. Con$ on Robotics and
Automation, Minneapolis, USA, April 1996, 1825-1 830.
M. A. Garcia and L. Basaiiez, Fast extraction of surface
primitives from range images, 13th IAPR Int. Con$ on
Pattern Recognition, Vol. III: Applications and Robotic
Systems, Vienna, Austria, August 1996,568-572.
K. Hattori and Y. Sato, Handy rangefinder for active robot
vision, IEEE Int. Con$ on Robotics and Automation, 1995,

M. Soucy, A. Croteau and D. Laurendeau, A multi-
resolution surface model for compact representation of range
images, IEEE Int. Con$ on Robotics and Automation, 1992,

D. Terzopoulos and M. Vasilescu, Adaptive surface
reconstruction, SPIE Vol. I383 Sensor Fusion III: 3-0
Perception and Recognition, 1990,257-264.

1423-1428,

1701-1706.

2818

