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Abstract 

This paper proposes a fast technique for  generating 
adaptive quadrilateral meshes from range images with no 
optimization. The obtained meshes adapt to the features of 
the input images by concentrating points in areas of high 
curvature and by dispersing them in low variation 
regions. This leads to more accurate approximations of 
the given range images than when uniform sampling with 
the same number of points is applied. Experimental 
results with real range images representing both free-form 
and polyhedral and cylindrical objects are presented. 

1 Introduction 

Range sensors are becoming a popular way of obtaining 
3D information in robotics owing to the development of 
low-cost devices able to provide dense images at high 
speeds [9]. However, the processing of dense range 
images containing hundreds of thousands of pixels is still 
costly and difficult to apply to real-time applications. 

One way of speeding up the processing of range images 
consists of reducing the amount of data contained in the 
images while keeping enough details that allow the appli- 
cation of further algorithms, such as segmentation or 
shape recognition. This can be done by removing points in 
areas of low variation and keeping them in areas of high 
curvature. In general, the objective becomes the genera- 
tion of a mesh that approximates the given range image 
with fewer data points. Further processing algorithms can 
then be applied to that mesh instead of to the dense range 
image directly [8]. 

Meshes generated from range images can be either reg- 
ular (quadrilateral) or irregular. Irregular meshes do not 
impose any conditions upon the distribution of the data 
points they hold. Therefore, they allow the representation 
of both scattered and regularly distributed points in space. 
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Among them, irregular triangular meshes are a widely- 
used representation owing to the availability of efficient 
triangulation algorithms. Several iterative optimization 
techniques have been proposed for approximating range 
images by triangular meshes (e.g., [2][10]). A faster 
approach which avoids such costly optimizations was pro- 
posed by Garcia [6]. 

Quadrilateral meshes are a less flexible data representa- 
tion compared to irregular meshes, since they require that 
the data points are distributed in rows and columns. How- 
ever, quadrilateral meshes are convenient and sometimes 
necessary for different applications, for example, for esti- 
mating the surfaces of the original objects contained in the 
image by applying tensor-product B-splines or NURBS, 
which are the “de facto” standard for free-form surface 
modeling in CAD/CAM. Although many techniques have 
been devised for reconstructing surfaces from irregular 
meshes (e.g., [7 ] ) ,  they are unable to perform as good as 
tensor-product methods. Besides, it is always possible to 
obtain a triangular mesh from a quadrilateral one by split- 
ting each rectangular cell into two triangles. This 
argument and the existence of algorithms that work with 
quadrilateral meshes (e.g., [4] [ 5 ] )  justify the utility of 
generating quadrilateral meshes from range images. 

The simplest way of generating a quadrilateral mesh 
from a range image is by sampling that image at specific 
intervals both horizontally and vertically. However, this 
process produces aliasing effects, since details in the 
image between two sampled points will be ignored. Thus, 
the objective is the generation of non-uniform quadrilat- 
eral grids, that vary their point density depending on the 
amount of information (details) present in the image. The 
underlying goal is to be able to capture more information 
with the same amount of data points. 

Similarly to the irregular case, previous methods for 
generating adaptive quadrilateral meshes from range 
images are based on iterative optimization techniques. 
Variational formulations and elastic models are some 
examples (e.g., [1][ 111). A recent algorithm segments the 
given image into patches and fits quadrilateral meshes to 
each patch [3]. However, those previous techniques are 
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computationally costly. Therefore, their application to 
fields with real-time requirements, such as robotics, may 
be more complicated. 

This paper presents a fast technique for generating 
adaptive quadrilateral meshes from range images with no 
optimization. The aim is the generation of a quadrilateral 
mesh with a user-specified number of rows and columns 
so that the distribution of the points is better than a uni- 
form distribution, in the sense that, with the same number 
of points in the mesh, the range image can be approxi- 
mated keeping more details. 

The proposed method divides the original range image 
into a set of rectangular regions or tiles. For each tile, an 
adaptive quadrilateral mesh is generated considering the 
curvature associated with the tile's image, such that points 
tend to concentrate in high-curvature areas and to disperse 
in low variation regions. Since each tile can be processed 
independently, the algorithm can benefit from the applica- 
tion of parallel architectures. Contrary to the randomized 
method proposed in [6] ,  the new algorithm is fully deter- 
ministic given the number of rows and columns desired 
for each tile. The algorithm is described in section 2. Sec- 
tion 3 gives experimental results with images containing 
both free-form and planar and cylindrical objects. Finally, 
conclusions are given in section 4. 

2 Adaptive Quadrilateral Mesh Generation 

A range image is a sampling, usually rectangular, of a 
scene surface. Its usual representation is a two dimen- 
sional array R, where each array element R ( r ,  c )  is a 
scalar that represents a surface point of coordinates: 
(x,y,z) = (f,(r), fy(c), fz( R ( r ,  c))) referred to a local coor- 
dinate system. The definition off,, f,, and fz depends on the 
properties of the actual range sensor being utilized. In 
general, R ( r ,  c) can be considered to be the distance 
between a surface point and a given reference plane which 
is orthogonal to the axis of the sensor and placed opposite 
to it at a specified distance. Invalid points in the image 
will be considered to have the background value p. 

This section presents an algorithm for generating a 
quadrilateral mesh that approximates a given range image 
adaptively. The algorithm consists of two main stages. 
The first stage filters small gaps and computes a curvature 
estimation of the whole range image. Then, the second 
stage divides the range image into a user-specified number 
of equal-sized rectangular regions or tiles. Taking into 
account the previous curvature estimation, an adaptive 
quadrilateral mesh, with a user-specified number of rows 
and columns, is independently generated for every tile. 
Finally, the meshes generated for every tile are recom- 
bined into a' final mesh which approximates the given 
range image. These stages are described below. 

2.1 Gap Filling and Curvature Estimation 

Given a range image R with R rows and C columns, a 
first stage of the algorithm removes single pixel gaps. This 
is done by substituting every background pixel sur- 
rounded by non-background pixels for the average of 
those neighbors. Let S ( r ,  c) be the set of non-background 
pixels that surround a given pixel R ( r, c ) ,  

Then, a filtered range image Rf(r, c) is computed as 
the average of all the pixels belonging to S (r, c) . 

This produces a filtered range image which compen- 
sates for sensing errors leading to undesired single-pixel 
gaps. Gaps larger than one pixel have not been removed in 
considering that they are real gaps in the sensed 3D sur- 
face. Notwithstanding, the previous filtering can be 
successively applied to remove larger gaps if necessary. 
An optional filtering of the whole range image, by apply- 
ing the same procedure to non-background pixels, can 
also be utilized in case of noisy range images. However, it 
has been discarded in our current implementation since it 
did not lead to significative improvements of the final 
mesh for the range images we have tested and also due to 
its tendency to remove details, such as sharp edges. This 
aspect is negative since the rest of the algorithm relies on 
the existence of distinctive features that determine the 
density of points of the final mesh. The problem can be 
overcome by applying multiresolution analysis (wavelets) 
instead of by simply averaging neighboring points. 

From the filtered range image Rf( r, c), a curvature 
image K ( r ,  c) is computed. K ( r ,  c) is a function of the 
curvature associated with the pixel corresponding to 
Rf( r, c). K ( r ,  c) is generated by merging the estimations 
of the curvature components along the horizontal K,, and 
vertical K,, directions of the image. First, two initial esti- 
mations are calculated, 

R 

c 

Next, a threshold operator ( a  > 0) is applied, 

KF; I a KF, = 
a otherwise 
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Figure 1 : (le$’) Original range image (rendered). (right) Associated 
curvature image. 

The curvature estimation is finally calculated as the logi- 
cal addition of the binary representation of the previous 
terms; K ( r ,  c) = K,, v K,, . R C  

According to this formulation, K ( r ,  c) is a scalar vary- 
ing between zero and a. The larger that value is, the larger 
the curvature at Rf(  r, c) is. Parameter a has been set to 
255 in order to store the curvature estimation as an 8-bit 
image while keeping enough resolution. Background pix- 
els have been given a constant curvature value to 
guarantee that background regions are sampled and to pre- 
vent large concentrations of points at jump edges-as a 
quadrilateral mesh is sought, the background must also be 
covered. Actual background curvature settings are 
described in section 3. 

With this approach, pixels with high values of K ( r ,  c) 
correspond to areas with high surface variation. On the 
contrary, pixels with K ( r ,  c) equal to zero correspond to 
planar regions. As in [6], the aim is to make the point den- 
sity of the final mesh in a certain region of the range 
image be proportional to the curvature associated with the 
pixels of that region. Thus, points will tend to concentrate 
in high-variation areas, ensuring that details present in 
those areas are accounted for. 

Fig. 1 shows a range image and its associated curvature 
image according to this technique. Black areas represent 
high curvature and white areas planar regions. 

2.2 Range Image Tessellation 

Both the filtered range image Rf ( r ,  c) and its curvature 
estimation K ( r ,  c) are partitioned into equal-sized rectan- 
gular tiles. Later on, an adaptive quadrilateral mesh will 
be independently defined for every tile. In this way, the 
density of points is locally adjusted to the shape of differ- 
ent regions of the image. That process can be run in 
parallel, taking advantage of high-performance 
architectures. 

The number H of horizontal and V of vertical partitions 
of the range image (and its associated curvature image) is 
an input parameter of the algorithm. 

A window Wvh ,  V E  [ O , V - l l , h ~  [ O , H - I ] ,  is 
defined by two 2D points: an upper-left corner 
( ulr,,, ulc,,) and a bottom-right corner ( brr,,, brc,,). 
Their coordinates are computed as: 

ulc,, = h R 
V H 

ulr,, = - v 

R 
brr,, = [ v - ( v + l )  v < v - 1  

‘ R - 1  v = v - I  

g ( h + l )  h < H - l  

c- 1 h = H - l  

A window W,, determines a tile (rectangular region) in 
the range image. The next stage of the algorithm com- 
putes an adaptive quadrilateral mesh for every tile 
independently. Adjacent windows (and therefore tiles) 
have an overlap of one line of pixels. Hence, the bound- 
aries of the quadrilateral meshes generated for adjacent 
tiles will coincide. 

2.3 Adaptive Mesh Generation 

Let R,, (r’, c’) be the range image tile defined by a 
window W,, when the latter is applied to the filtered 
range image Rf ( r, c): 

R,, (r’, c’) = R f (  r’ + ulr,,, c’ + uk,,) 

The two parameters (r’ ,  c’) are local to the tile: 
r’ E [ 0, R / V ]  , c’ E [ 0, C / H ] .  Let also K,, (r’, c’) be 

the curvature image tile defined by the same window on 
the curvature image K ( r ,  c). The objective now is the 
definition of a quadrilateral mesh which adapts to the sur- 
face contained in R,, (r’, c’) based on its corresponding 
curvature estimation K,, (r’, c’) . Notice that each tile can 
be considered to be a small range image with its corre- 
sponding curvature estimation. 

For every image tile R,, (r’, c’) , an adaptive quadrilat- 
eral mesh HVS,, ( i , j )  with rows and < columns is 
generated. The number of rows and columns of that mesh 
is an input parameter of the algorithm and determines the 
number of rows and columns of the mesh corresponding 
to the whole range image. 

Given the image tile R,, (r‘ ,  c‘) and its associated cur- 
vature estimation K,, (r‘, c’) , two steps are necessary to 
generate a quadrilateral mesh. The first stage generates 6 
vertical curves that adapt to the shape of the image tile. 
These curves tend to approach in areas of high curvature 
and to disperse in low-variation regions. The second stage 
samples each of these curves at R different points, so that 
the points also tend to concentrate in high-curvature areas 
and to disperse in low-variation ones. The outcome of this 
stage is an R x 6 array of points for every tile. Similar 
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results are obtained by generating horizontal curves in the 
first stage. 

In order to define a collection of vertical curves that 
adapt to the shape of the image tile R,, (r’ ,  c’) , a set of 6 
pixels is selected from each row of pixels of the tile based 
on its curvature estimation. This is done as follows. 

Let R,, ( r’, c’) , c’ E [ 0, C / H ]  and r’ fixed, be a row 
of pixels and K,, (r’, c’) their corresponding curvatures. 
Following the principles utilized in [6], this curvature pro- 
file is mapped to an unnormalized probability density 
function that expresses the probability of selecting each 
pixel of the range image tile, so that pixels with high cur- 
vature will have a higher chance of being selected for the 
mesh. The discrete, unnormalized probability density 
function fvhrt (c’) is defined by applying a transformation 
function to the curvature profile: 

(1) f v h /  ( c’> = I( Kvh ( r’l c‘) 

The transformation function I determines the vari- 
ation of density of points with respect to a variation of 
curvature. A linear variation implies that for high cur- 
vature areas, the density of points is very high. This 
linear behavior produced final meshes with excessive 
concentration of points. However, if a logarithmic 
function is used, the density of points varies more 
gently. Thus, the transformation function that has been 
finally chosen is 

(2) I ( x )  = K, log x 

where K ,  is a proportionality constant which deter- 
mines the maximum value of the density function. It 
has been experimentally set to 500. Alternative sub- 
linear functions can also be utilized, resulting in 
different point density variations. Even a customized 
transfer function can be devised by utilizing B- 
splines. 

Next, a discrete, unnormalized probability distribution 
function Fvhrt (c’) is obtained as: 

C’ 

Fvhr‘ (c ’ )  = x f v h r ’  ( j )  - fVh# (O) (3) 
i = O  

If the value range of Fvhr, (c’) is sampled at 6 points 
uniformly distributed, the application of the inverse distri- 
bution function F-’vhr’ ( y )  to those points leads to a set of 
5 points that are adaptively distributed according to 
fvhrl (c’). This principle is illustrated in Fig. 2. In our case, 
since the probability distribution corresponds to the cur- 
vature estimation, the density of points will be correlated 
to the curvature and, hence, to shape variations. 

In order to obtain Filr ,  ( y )  given the set of 5 points y 
uniformly distributed between 0 and the maximum 
Fvhr, (c’), a table keeping the values Fvhr. (c’) for all the 
c’ E [0, C / H ]  is computed. Then, a single iteration 

I 
1 

+ c’ 

C adaptive samples 
Figure 2: (top) An unnormalized probability density function 
f(c’) that represents curvature associated with every pixel c‘. 
(bottom) Uniform sampling of the range of the corresponding 
~ ~ ~ r m a l i ~ e d  probability distribution function F (c’) gives a set of 
points whose density varies according to f( c’). 

Figure 3: (left) Curvature image (right) Vertical curves computed 
after adaptive horizontal sampling, with H = V =  4 and 5 = 9. 

traverses this table, extracting those positions c’ such 
that Fvhr,(c‘) = y .  A vector of horizontal sampled 
points HS,,,, U), j E [ 0, < ) , keeping the different c’ s 
is obtained in this way. 

This process is repeated for every row r’ of the range 
image tile Rvh (r’, c’) , producing an (R/V+ 1) x 5 array: 

HS,, ( r ’ , j )  = HS,,,, 0’) 1 r’ E [o, R / V l j  j E [o, r 
For each value j ,  if we iterate over r ’ ,  we obtain a col- 

lection of points (r‘ ,  HS,, (r’, j )  ) that determine a 
“vertical” curve in the range image. Going over all the dif- 
ferent j values, we obtain a collection of vertical curves 
that tend to adapt to the shape of the underlying objects 
contained in the range image, moving together in areas of 
fast shape variation. Fig. 3 shows the set of vertical curves 
obtained by applying this procedure to all the tiles of the 
range image shown in Fig. 1, considering a tessellation in 
4 by 4 tiles with 9 columns per tile (6 = 9). 

Each vertical curve obtained above corresponds to one 
of the columns of the final quadrilateral mesh associated 
with the tile being processed. In order to obtain the rows 
of the quadrilateral mesh, each of these curves is adap- 
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Figure 4: (lef) Horizontal and vertical sampled points with 
H = V =  4 and < = 9. (righf) Same number of points with uniform 
sampling. 

tively sampled at positions ( K  is the input parameter 
that indicates the number of rows per tile). The process is 
similar to the previous one, which leads to horizontal sam- 
ples from rows of pixels extracted from the tile. The 
difference now is that a curvature profile is obtained from 
the positions of the points that belong to one of the curves 
instead that from the positions corresponding to a hori- 
zontal row of pixels. Again, each tile is processed 
separately. 

Let VCVhj (r’)  = HS,,  (r’,j),  r’ E [0 ,  R / V ] ,  repre- 
sent the vertical curve corresponding to a certain 
column j ,  j E [0, < ). The 2D positions of the points 
belonging to that curve are (r’, V C V y  (r’)  ). 

The unnormalized probability density function corre- 
sponding to the curvature profile associated with each 
curve is an adaptation of (1): 
fvhj (r’)  = T(Kvh  (r’,  VCvhj (r’)  ) ). Similarly to (3), an 
unnormalized probability distribution function 
FVhj(r’)  is computed. Then the image space of this 
distribution function is uniformly sampled with K 
points y and the inverse distribution function Fihj ( y )  
applied to them to obtain a set of xpoints r’ such that 
F V y  (r ’ )  = y . A vector of vertical sampled points 
VS,,,.(i), i E [O, R ) ,  keeping the different r’s is 
obtained in this way. In the end, we obtain an $x 
array of horizontal and vertical sampled points: 

In summary, given a range image tile Rvh ( r ’ 7  c’) and 
its associated curvature image K,, (r’, c’) ,  the array 
HVS,,  ( i , j )  contains the 2D coordinates (r’ ,  c’) of the 
point selected for each row i and column j of the adaptive 
quadrilateral mesh corresponding to the given tile. Fig. 
4(Ze$) shows the set of vertical and horizontal sampled 
points obtained for all the tiles in which the original range 
image has been tessellated (4 by 4). Fig. 4(right) shows 
the same number of sampled points considering uniform 
sampling. In the adaptive distribution, points tend to con- 
centrate in areas of high curvature, highlighting the shape 
of the objects contained in the image. Notice that since the 
sought mesh is rectangular, background areas are also 
sampled. 

In order to generate the final mesh corresponding to the 
range image as a whole, the quadrilateral meshes associ- 
ated with each tile are merged. By construction, the 

Figure 5: (left) Uniform quadrilateral mesh with 31 x 31 points. 
(right) Adaptive quadrilateral mesh with 31 x 31 points. 

Figure 6: (left) Rendering of the uniform quadrilateral mesh with 
31 x 31 points. (right) Rendering of the adaptive quadrilateral 
mesh with 31 x 31 points. CPU generation time = 0.21 sec. 

boundaries of adjacent tiles overlap. Therefore, the final 
mesh will contain a total of (R-  1) V +  1 rows and ( c  - 1) H + 1 columns, with (x, 5) being the number of 
rows and columns per tile, and (V, H )  the number of 
vertical and horizontal partitions of the original range 
image into tiles. 

This mesh is stored in a 2D array HVS which keeps, 
for every position, the (r ,  c) coordinates of the sam- 
pled points: 
H V S ( v ( R - 1 )  + i , h ( c - l )  + j )  = HVSv , ( i , j )  + 

3 Experimental results 
Fig. 5 shows a 3D view of both the uniform (left) and 

the adaptive (right) quadrilateral meshes corresponding to 
the range image shown in the previous figures. The pro- 
portionality constant of the transformation function in (2) 
was experimentally set to 500. 

The curvature associated with the background pixels 
was set to 5. This constant determines the density of 
points sampled over background regions when these 
regions join with non-background regions in a same tile. 
So far, this value is heuristically set. An automatic proce- 
dure is being studied that adjusts this constant 
independently for every tile as a function of the overall 
curvature of the non-background regions of the tile. The 
aim is to sample the background uniformly and, at the 
same time, not to concentrate many points in it so that 
non-background areas may result undersampled. 

+ ( u z r v h ,  uzcvh)  
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Figure 7: (top-left) Range image (399x263). (top-right) Adaptive 
sampling with 55x37 points. (bottom-left) Uniform mesh. (bottom- 
right) Adaptive quadrilateral mesh. CPU time = 0.82 sec. 

Fig. 6 shows a rendered version of both the uniform 
(left) and adaptive (right) meshes. To display a 3D solid, 
quadrangular cells have been split into two triangles by 
cutting each cell along the diagonal that minimizes the 
error with the original range image. Notice that the uni- 
form mesh exhibits artifacts along crease and jump edges. 
These artifacts are reduced in the adaptive sampling. 

The range image of the previous example contains 154 
rows and 183 columns while the final quadrilateral 
meshes (uniform and adaptive) contain 31 rows and col- 
umns. The CPU time to compute the adaptive 
quadrilateral mesh is 0.21 sec. using an SGI Crimson 
workstation with a lOOMHz R4000 processor. A CPU 
time of 0.1 sec. was measured with an SGI Indigo I1 with 
a 200MHz R4400 processor. 

Since the proposed technique tends to improve the 
approximation of the details of the range image (jump and 
crease edges, high-curvature shapes) by reducing the 
aliasing effect of uniform sampling, and these features 
usually represent small details in the overall range image, 
the global relative error of approximation [6] does not 
show big differences between the uniform and adaptive 
meshes. Differences are qualitative rather than quantita- 
tive. Even though, the improvement is also noticeable, 
with a relative error of 0.33% for the adaptive mesh ver- 
sus a 0.45% for the uniform one. 

Fig. 7 shows an example of the application of this tech- 
nique to a range image containing a free-form surface. 
The original image has 399 rows and 263 columns. This 
image is tessellated into 4x6 tiles with 10 rows and col- 
umns per tile. The background curvature was set to 20. 
The final mesh of 55 rows and 37 columns was generated 
in 0.82 sec. (0.41 sec. with the 200 MHz SGI Indigo 11). 
The relative error of the adaptive mesh is 0.26% versus 
0.32% of the uniform mesh. 

4 Conclusion 

A fast technique for obtaining adaptive quadrilateral 
meshes from range images has been presented. The gener- 
ated meshes improve the quality of approximation of 
quadrilateral meshes obtained through uniform sampling, 
by concentrating points in areas of high curvature while 
keeping the regularity constraint. The proposed technique 
is fully deterministic and avoids costly iterative optimiza- 
tion algorithms, making it suitable for real-time 
applications. Besides, it is inherently parallel. Hence, it 
can benefit from the application of parallel architectures. 

An implementation of the proposed technique in C lan- 
guage is available by contacting the authors. 
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