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Abstract 

This paper presents a new technique ,for approximating 
range images by means of adaptive triangular meshes 
with a bounded approximation error and without apply- 
ing optimization. This new approach consists of three 
stages. In the first stage, every pixel of the given range 
image is mapped to a 30 point defined in a reference 
frame associated with the range sensor. Then, those 30 
points are mapped to a 3 0  curvature space. In the second 
stage, the points contained in this curvature space are tri- 
angulated through a 30 Delaunay algorithm, giving rise 
to a tetrahedronization of them. In the last stage, an itera- 
tive process starts digging the external surface of the 
previous tetrahedronization, removing those triangles 
that do not fulfill the given approximation error. In this 
way, successive fronts of triangular meshes are obtained 
in both range image space and curvature space. This iter- 
ative process is applied until a triangular mesh in the 
range image space fulfilling the given approximation 
error is obtained. Experimental results are presented. 

1. Introduction 

As range sensors are becoming more efficient and af- 
fordable, the use of range images for 3D computer vision 
applications is significantly increasing. Dense range im- 
ages are highly redundant representations in the sense 
that, for instance, large planar areas can occupy thousands 
of pixels in the image. In order to accelerate further pro- 
cessing, range images can be approximated by more 
efficient representations, such as triangular meshes [ 13. 
Subsequent processing can then be done at a higher ab- 
straction level in the geometric domain, dealing with 
triangles instead of with individual pixels (e.g., [ 2 ] ,  [3]) .  

In order to obtain triangular approximations with a 
predefined bounded error, two main approaches have been 
proposed. The first approach (fine-to-coarse) starts with a 
dense triangular mesh containing all the points of the 
original range image and, at each iteration, removes the 
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point that introduces the lowest error (e.g., [4][5]). The 
second approach (coarse-to-fine) starts with a few trian- 
gles and, at each iteration, adds the point that produces 
the largest error reduction (e.g., [SI). Since optimization 
is applied at each iteration, those methods become very 
costly when they are applied to large range images. 

A fine-to-coarse algorithm that does not apply optimi- 
zation at each iteration and ensures a bounded error was 
proposed in [7]. This technique starts with the dense tri- 
angular mesh that contains all the original points in the 
image and successively removes points until the resulting 
surface intersects with one of two offset surfaces which 
are initially defined above and below the original triangu- 
lar mesh, at a distance of half the maximum allowed error. 

This paper presents a coarse-to-fine technique for gen- 
erating an adaptive triangular mesh with a bounded 
approximation error without applying optimization. The 
proposed technique is described in section 2. Section 3 
presents experimental results and finally, conclusions and 
further improvements are given in section 4. 

2. Generation of triangular meshes with 
bounded approximation error 

The proposed algorithm computes an adaptive triangu- 
lar mesh M that approximates a given range image R such 
that the approximation error (tolerance) between M and R 
is below a specified threshold 5. 

The algorithm consists of three stages. In the first 
stage, the original range image is mapped to a 3D image 
space whose reference frame is attached to the range sen- 
sor. Thus, each pixel of the range image is converted to a 
3D point P. The set of all those 3D points will be referred 
to as the 3 0  range image. Afterwards, each point P is 
associated with a curvature value obtained by estimating 
the surface that would pass through that point in the 3D 
range image. Taking these curvatures into account, all the 
points P are mapped to a 3D curvature space. 

The second stage of the algorithm triangulates the 
points contained in the curvature space through a 3D 
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Delaunay algorithm. The effect accomplished by apply- 
ing the 3D triangulation in curvature space instead of in 
the 3D image space is that the coarsest (outest) triangles 
in the tetrahedronization tend to join distinctive points 
(points with high curvature), which define the shape of 
the objects being approximated. 

Finally, in the third stage, an iterative process starts 
digging the triangular mesh that constitutes the external 
surface of the previous tetrahedronization, removing 
those triangles that do not fulfill the approximation error. 
Each removed triangle is substituted for the three trian- 
gles that form its corresponding tetrahedron. In this way, 
the external mesh of the tetrahedronization is successively 
refined until all its triangles satisfy the approximation 
error. These stages are further described below. 

2.1. Mapping to a 3D curvature space 

A range image is a rectangular sampling of a scene 
surface. Its usual representation is a two dimensional 
array R ,  where each element R(r ,  c )  is a scalar that rep- 
resents a 3D point P of coordinates: 
P = ( f , (c) ,  f , ( r ) ,  f z ( R ( r ,  c))) referred to a local ref- 

erence frame. The set of points P = (x ,y,  z )  defined 
above constitute the 3D range image. The viewing direc- 
tion is aligned with the Z axis of the local reference frame 
and it is pointing downwards: D = (0, 0, -1). 

The surfaces of the objects contained in the range im- 
age can be approximated through a trivial triangulation of 
the points in the 3D range image, by joining them along 
the rows, columns and diagonals associated with their 
corresponding pixels in the range image. This triangular 
mesh will be referred to as the original triangular mesh. 

For each point P = ( x ,  y ,  z )  belonging to the 3D 
range image, an estimation of its curvature is computed as 
K = 1 8 z - C z I I ,  where z ,  denotes the z coordinate of 
each of the eight neighbors of P. 

After obtaining the 3D range image and computing all 
the curvatures, each point P associated with R(r ,  c) is 
mapped to a point P’ = (x’, y’, z’) in the 3D curvature 
space as: x’ = ar , y’ = ac,  2’ = l og ( l+  3 + K*) ,  
with ’3 being a random real number ranging between 
zero and one, and a being a constant necessary to prevent 
degenerated tetrahedra due to precision errors. The ran- 
dom component is necessary to avoid degenerated 
tetrahedra in areas of constant curvature, in which all the 
points tend to lie on the same plane when they are consid- 
ered in the curvature space. 

2.2. 3D Delaunay triangulation of points in 

At this stage, the points in the curvature space are tri- 
angulated by using a 3D Delaunay algorithm that 
produces a list of tetrahedra. Each of the four triangles 
that form every tetrahedron is defined by three identifiers, 
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Figure 1. 2D section of the convex-hull and the exterior 
mesh associated with it for a set of points represented in 
the 3D curvature space. 

(to, t l ,  t 2 ) ,  which represent three differents points. In 
order to speed-up further operations, all the triangles 
obtained above are inserted into a hash table. 

A triangle T belongs to two tetrahedra at most. Thus, it 
has associated two opposite points, ( o p ,  , o p 2 ) ,  which 
constitute the apices of those tetrahedra. As a particular 
case, triangles that belong to the external mesh of the tet- 
rahedronization are only contained in one tetrahedron. 
Those triangles are referred to as exterior triangles. After 
applying the 3D Delaunay triangulation, the set of all the 
exterior triangles constitutes the convex-hull of the 
tetrahedronization. 

An exterior triangle T = (to, t , ,  t 2 )  has associated a 
unitary normal vector N obtained as the cross-product of 
the 3D points that form T, reoriented in such a way that it 
is pointing out of the positive half-space determined by 
the plane of T. The positive half-space is the half-space 
delimited by the plane containing T and which does not 
contain the vertex opposite to T. The latter vertex is the 
apex of the tetrahedron whose base is T. Since exterior 
triangles only belong to one tetrahedron, it is very effi- 
cient to determine whether a certain triangle is exterior or 
not given the identifiers of its vertices. 

As we are dealing with range images obtained from a 
certain viewing direction D, only those exterior triangles 
whose normal vectors have an angle with respect to D 
higher than 90 degrees belong to the surfaces of the ob- 
jects present in the image. The exterior triangles that fulfil 
the previous condition form the exterior mesh (Fig. 1). 

2.3. Digging process 

Let M be the exterior mesh obtained as the union of 
the exterior triangles determined as described in 
Section 2.2. We will consider that this mesh is validated 
and, therefore, that a valid solution to the approximation 
problem has been found, when all its triangles, considered 
in the image space, have an approximation error below or 
equal to the given error 4 .  

The iterative digging process goes over all the triangles 
of the exterior mesh M. If a triangle has some of its con- 
trol points at a distance farther than 6 ,  this triangle is 
marked for removal. After all triangles have been consid- 
ered, each triangle marked for removal is substituted for 
the other three triangles that belong to its tetrahedron. 
Thus, a new exterior mesh M is obtained and the process 
is repeated. These two steps are detailed below. 
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Figure 2. Final exterior mesh in image space containing 
6,787 triangles obtained after 31 digging iterations (original 
image contains 26,028 triangles). 

2.3.1. Triangle validation. The validation process is 
carried out in the image space and consists of measuring 
the approximation error associated with each triangle. 
The approximation error is the maximum distance, 
measured along the viewing direction D, among a triangle 
and its control points. The control points utilized to 
validate a triangle T are those points of the 3D range 
image whose projection, along the viewing direction, is 
contained in T. 

At the beginning of the digging process, all the trian- 
gles of the exterior mesh are invalid. During the digging 
process, only invalid triangles are considered. 

The validation of an invalid exterior triangle T consists 
of verifying that the set of 3D range image points P that 
project onto that triangle are located at a distance from T 
below or equal to 5 .  If any of these control points are 
located at a distance from T farther than 5 ,  the triangle T 
is left as invalid. That triangle will be removed after all 
the current exterior triangles have been validated. 

On the other hand, if all the control points that project 
onto T are located at a distance below or equal to 5 ,  T is 
labeled as valid. This implies that T belongs to the final 
solution and it will not be considered during the following 
iterations of the digging process. 

2.3.2. Invalid triangle removal. At this point, the 
triangles of the current exterior mesh M are valid or 
invalid. If all triangles are valid, M is already a solution to 
the problem and the algorithm concludes (Fig. 2). 
Otherwise, all the invalid triangles are removed. 

Given an invalid exterior triangle T with indices 
(to,  r I ,  t 2 )  (see Section 2.2.), the identifier of its opposite 
point opi  is extracted from the hash table. That identifier 
corresponds to the apex of the tetrahedron that contains T. 
Triangle T is then substituted in the exterior mesh for the 
other three triangles that form its tetrahedron. If any of 
those new triangles was already contained in the exterior 
mesh, that new triangle is not inserted and the existing 

one removed from the mesh. The new inserted triangles 
are labeled as invalid. 

If after having removed all the invalid triangles, no 
new exterior triangles have been included in the exterior 
mesh M, the latter is already a solution to the problem 
and the algorithm concludes. Otherwise, if new triangles 
have been included, the digging process starts over from 
stage 2.3.1.. 

3. Experimental results 

The proposed technique has been tested with different 
real range images. Fig. 2 shows a final triangular mesh 
obtained after 3 1 digging iterations. This mesh approxi- 
mates the original range image by means of triangles of 
different size. Smaller triangles are located in high curva- 
ture regions and bigger triangles in low curvature regions 
(e.g., planar regions). The final triangular mesh contains 
6,787 triangles while the original 3D range image con- 
tains 26,028 triangles. CPU times have been measured on 
a SGI Indigo I1 with a 175 MHz RlOOOO processor. The 
CPU time to compute the curvature space mapping was 
0.95 sec. The 3D Delaunay triangulation took 31.56 sec. 
and the loading of the hash table 3.28 sec. Finally, the 31 
digging iterations took 23.07 sec. The maximum approxi- 
mation error 5 for this example correspond to a 0.041% 
of the maximum z value of the given 3D range image. 

Fig. 3 shows different triangular approximations from 
another real range image. The original triangular mesh 
contains 27,798 triangles. The CPU time to compute the 
curvature space mapping was 1.29 sec. The 3D Delaunay 
triangulation was computed in 44.01 sec. and the loading 
of the hash table took 4.44 sec. Fig. 3 (top) shows the 
final triangular mesh obtained after 44 digging iterations. 
It contains 2,628 triangles. Its maximum approximation 
error corresponds to a 0.13% of the maximum z value of 
the given 3D range image. The CPU time to compute 
these iterations was 5.17 sec. Fig. 3 (middle) shows 
another approximation of the same range image. It has a 
maximum approximation error of 0.039% of the maxi- 
mum z value of the given 3D range image, and contains 
5,630 triangles. This final representation was obtained 
after 52 digging iterations and the CPU time was 11.79 
sec. Fig. 3 (bottom) shows an approximation with a maxi- 
mum error of 0.013%. This representation was obtained 
after 58 digging iterations. The final triangular mesh con- 
tains 9,545 triangles and was obtained in 24.01 sec. More 
experimental results can be found in [8]. 

Finally, the 3D range image corresponding to the ex- 
ample of Fig. 3 has been utilized to compare the proposed 
technique with two public iterative decimation algo- 
rithms: JADE [5] and Simplification Envelopes [7]. In 
both algorithms, the approximation error was set to the 
same value utilized for the proposed technique. JADE 
generates a triangular mesh that approximates the 3D 
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4. Conclusions and further improvements 

Figure 3. Three different approximations of a real range 
image. The 3D range image contains 27,798 triangles. 
(top) Final exterior mesh containing 2,628 triangles, 
approximation error 0.1 3%. (middle) Final exterior mesh 
containing 5,630 triangles, approximation error 0.039%. 
(bottom) Final exterior mesh containing 9,545 triangles, 
approximation error of 0.013°/0. 

range image with 5,205 triangles. The result is compara- 
ble to the one obtained with the proposed technique but it 
takes 142.7 sec., more than twice the time spent by the 
proposed technique (58.86 sec.). Simplification Envelopes 
generates a comparable approximation with 5,495 trian- 
gles in 1,315 sec. 

A new approach for generating bounded error triangu- 
lar meshes from range images with no optimization has 
been presented. This technique maps the pixels of the 
given range image to a 3D curvature space. After triangu- 
lating those points, a digging process starts eroding the 
external surface of the resulting tetrahedronization until a 
mesh fulfilling the desired tolerance is obtained. The 
approximation error of that external surface is verified in 
the 3D image space. 

The proposed technique does not apply any optimiza- 
tion step and is more advantageous than other approaches, 
such as [7], whenever a coarse resolution mesh is sought, 
since the iterative process starts with a coarse resolution 
triangular mesh, the convex hull, and progressively 
refines it until the desired mesh is obtained. 

We are currently studying the application of disconti- 
nuity-preserving filtering techniques [9] in order to 
reduce the oversampling of planar regions due to noise. 
Comparisons of the proposed technique with hierarchical 
triangulation approaches (e.g., [lo]) will also be studied. 
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