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ABSTRACT

This paper presenis a new approach for 3D gait esti-
mation from monecular image sequences, using both a
kinematics and a walking motion models as sources of
prior knowledge. The proposed technique consists of two
major stages. Firstly, the motion rrajecrory and the pedes-
trian’s footprints are detected throughout the segmented
video sequence. Secondly, as the 3D himan model, driven
by the prior motion model, walks over this trajectory, the
joints’ angles are locally adjusted to the pedestrian’s
walking style. This tuning process is performed once per
walking cycle and not per frame, saving considerable
CPU time. In addition, local tuning allows handling dis-
placements at different speeds or directions. The rarget
application is the augmentation of 2D television
sequences with depth information that may be wused in
Sfuture 3D-TV systems.

1.INTRODUCTION

3D-TV opens a new and attractive field of applications,
from more realistic movies to interactive environments,
However, in order to fully exploit these new 3D-TV sys-
tems all the existing 2D video material should be converted
into 3D. Theoretically, it is not possible to completely re-
cover 3D information from 2D video sequences when no
other extra information is given or can be estimated. Since
television sequences are populated with objects with
known structure and motion such as humans, cars, etc, pri-
or knowledge would arguably aid the recovery of the
scene. Prior knowledge in the form of kinematics con-
straints (average size of an articulated structure, degrees of
freedom (DOFs) for each articulation), or motion dynamics
(physical laws ruling the objects’ movements), is a com-
monplace sofution to handle the aforementioned problem.
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In real world conditions, 3D human motion modcling
using monocular image sequences constitutes a complex
and challenging problem, which involves difficultics such
as: self-occlusions, depth ambiguitics of the body parts,
walking direction estimation, erroneous background seg-
mentation, ete. (see [1] for more details).

In order o avoid some of the aforementioned problems,
3D human walking modeling has been usually tackled by
making simplifying assumptions (e.g. {2], [3]. {4]) or by
imposing constraints on the motion (e.g. walking in a plane
orthogonal to the camera with a conslant speed [5], [6]).
Moreover, in order 1o register the projection of the com-
puted 3D model with the given image, several fealures
have been combined [7], such as skin color, edges, skele-
ton, optical flow, etc.

The proposed approach consists in dividing the given
walking sequence into scparate walking cycles, which are
independently processed. An explicit motion model,
defined by a set of motion curves driving each articulation,
is used as initial approximation of the motion. These
curves, obtained from anthropometric studies [6], are indi-
vidually tuned by the algorithm according to the walking
attitude of each pedestrian (Fig. 1). The main advantage
comparing with previous approaches is that matching
between the projection of the 3D model and the image fea-
tures is performed once per walking cycle and net per
frame. A brief description of the 3D body modeling, -
together with depth estimation is given below. The pro-
posed technique is presented in section 4 and section 5.
Section 6 shows experimental results and finally conclu-
sions and future work are introduced in section 7,

2.3D BODY MODELING

In the current work, similarly than in [8], an articulated
structure defined by 16 links (superquadrics) and 22 DOF,
4 for each arm and leg and 6 for the torso (3 for orientation
and 3 for position) was chosen (Fig. 2(/eff)). However, in
order to reduce the complexity, it was assumed that while
walking, the legs’ and arms® movements are contained in
parallel planes and that the body’s orientation is always or-
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Figure 2. (leff) Mlustration of a 22 DOF model built wi
superquadrics. (right) Simplified articulated structure (12 BOFs).
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thogonal to the floor. Hence, the final model is defined by 2

DOF for each arm and leg and 4 for the torso (3 for posi- -

tion plus | for oricntation). The movements of the limbs
are bascd on a hierarchical approach using Euler angles.
The body posture is synthesized by concatenating the
transformation matrices associated with the joints, starting
from the torso.

3.DEPTH ESTIMATION

The transformation matrices defining the 3> orientation
{R.) and position {T,) of the camera coordinate system
have been assumed known. The mapping between the
world-coordinate reference frame and the camera-coordi-
nate reference frame is given by:
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where a 3D point in the camera-coordinate reference frame
is represented by P_(x,.y,. z.) , while in the world-coordi-
nate reference frame by P (x,.¥,. z,) . The pedestrians
height is assumed to be equal to an average human height.
Finally, the perspective projection of a point to the image

plane is defined as:
_{col/2
row/?2
where f. is the focal length. '

Using these equations, the 3D world coordinates of the
center of the segmented image are computed (Fig. 3 (rop-
right)) for every input frame. Fig. 3(bottom-left) illustrates
the center point’s path resulting from the estimated depth val-
ues. The result is not smooth enough since variations in the
segmented figure affect depth estimation values. In order to
generate a smoother path, the estimated depth values are fil-
tered by using a spline curve. These depth values will be
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used to compute the footprints’ position. In addition, since
the person’s body is oriented towards the direction of move-
ment, the gradient of the path is used to determine the
model’s orientation.

4. FOOTPRINT DETECTION

We may salely assume that the center of gravity of a walk-
ing person is continuously in movement. However,
throughout walking displacements there is at lcast a foot
with null velocity (pivot foot) and one instant per walking
cycle in which both feet are in contact with the Aoor (both
with null velocity). The latter happens when the pedestrian
changes from one pivot foot to the other. Frames contain-
ing these configurations will be called anchor frames and
can be easily detected by extracting static points through
the given video sequence. A poinl is considered as a stalic
point spf ¢, jy in frame F, if it remains a boundary point
bp (i jy in at least three consecutive frames——value com-
. ¥ Fol , F Fil -
puted experimentally srp(‘-.j,:(bp(,m, bpi BB ) Fig.
4(top) shows an illustration of static points (black points)
detected after processing consecutive frames.

Static points defining a single footprint do not belong all
to the same frame but to a sequence of several consecutive
frames, in which the foot was in contact with the floor.
Considcering that foots sole is not a rigid surface, a single
foot generates a set of static points during the time in which
different parts of it are in contact with the floor. Hence,
pointg belonging to the same footprint should be clustered.

The implemented clustering technique is similar to a re-
gion growing using both spatial and temporal information,
The label associated with a_static point (footprint index),
computed in a frame F, stp” ¢, j), is propagated to a neigh-
bor static_point StPGisy ite) -TE {0, 1}, ce {0, 1} if
this spatial neighbor point has been computed in a temporal
neighborhood of a maximum of I' frames from the consid-
ered frame F (ie. |[F-M<T). In the current
implementation I has been experimentally set to six. The
proposed footprint labeling technique starts labeling those
static points contained in the first frame and then propa-
gates these labels to consecutive frames. At each stage,
new static points are labeled either with new index values
or with footprint indexes propagated from previous frames.
An example of the results obtained after applying this tech-
nique is presented in Fig. 4(bottom-right). Notice that
using temporal information, spatial ambiguities generated
by trajectories parallel to the camera direction or by path
self-crossing are easily avoided Fig. 4(bottom-left).

5.MOTION MODEL TUNING

The result from the previous clustering stage is a list of
footprints with a corresponding set of points defining each
one. In addition to the set of points, each footprint has an
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Fig. 3. lllustration of the center peint’s path computed from a
video sequence of 540 frames
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Fig. 4. (top) Static points detected for each frame. (bottom-ieft)
All the computed static points represented in a single image.
(bottom-right) Foolprints labelled by the spatial and temporal
clustering of the static points.

associated fist containing the numbers of the frames where
it was detected, qu{Fa. Fpo .. F, f}. Intermediate frames,
where footprints have not been detected at all (e.g. Fig.
4{top-d)), are also included in that list for continuity.

The objective is to find those frames where both feet are
in contact with the floor (Fig. 4(top) (a)-(b} and (e)-(f}). This
happens in every half walking cycle in several conseculive
frames (Fig. 4(top) shows one out of four of the original
frames). The frame lying in the center of those consecutive
frames is defined as anchor frame. At every anchor frame,
the articulated human body structure reaches a posture with
maximum hip angles. In the current implementation, hip an-
gles are defined by the legs and the vertical axis containing
the hip jeints. This maximum value is used to compute 2
scale factor k;, which adjusts the hip motion model (Fig. 1)
to the pedestrian’s walking. This local tuning, within a half
walking cycle, is illustrated in Fig. 5, where the computed
scale facter is actually vsed for a quarter of the walking cy-
cle, from the current anchor frame until halfway to the next
one. During the next quarter of the walking cycle an updated
scale factor, calculated from the maximum hip angle in the
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Figure 5. Half walking cycle executed by using scale factors
(l(l, K2) over the hip motion curve presented in Fig. 1. Spatial
position of points (D, H, C and B) are computed by using angles
from the motion curves and trigonometric relationships.

next anchor frame, is used. A 2D articulated structure is de-
picted in Fig. 5 in order to make understanding easier.
However the tuning process is carried out in 3D space. Depth
values of footprints (A, B} or (A™ B") are computed as an
average of the center point’s depth in the frames where these
lfootprints appear. The number of frames in between two an-
chor frames defines the sampling rate of the motion curves,

The differences in walking between people implies. that
all the motion curves should be modified by using an
appropriate scale factor for each one. In order to estimate
these faclors an error measurement (registration quality
index: RQM is introduced. The proposed RO measures the
quality of the matching between the projected 3D model
and the corresponding walking human figure. It is defined
as: RGI = overlappedArea/totalArea , where total area
consists of the surface of the projected 3D model plus the
surface of the walking human figure less the overlapped
area, while the overlapped area is defined by the overlap of
these two surfaces. Firstly, the algorithm computes the
knee scale factor that maximizes the RQS values. In every
iteration, an average RQI is calculated for all the sequence.
In order to speed up the process the number of frames was
subsampled. Afterwards, the elbow and shoulder scale fac-
tors are estimated similarly.

6. EXPERIMENTAL RESULTS

The proposed technique has been tested with different out-
door video sequences. The video sequence used as an
illustration throughout this work consists of 540 frames of
240x320 pixels each, which have becn segmented using the
technique presented in [9]. In this sequence, the pedestrian
follows the trajectory depicted in Fig. 3 and her walking
speed is variable. Results of the propesed algorithm are
presented in Fig. 6. Notice that the model is able to follow
the pedestrian independently of the walking direction, in
particular when the pedestrian changes direction (see last
two frames in Fig. 6(fop)). The corresponding 3D models
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Fig. 6. (top) Final results of a

Fig. 7. Final result of a short video sequence (in white the
" projected model).

are presented in Fig. 6(bottom). The RO/ for the total video
sequences has been 0.59.

Fig. 7 shows some results of a video sequence defined
by 70 frames of 240x320 pixels each. The segmented input
frames have been provided by the authors of [10]. In this
case the RQ/ value was 0.5. The main reason for this poor
performance is that the pedestrian is carrying a backpack
and he is not wearing so tight clothes. The average CPU
time for the different stages of the proposed algorithm was
0.37 seconds per frame. This time includes depth estima-
tion, static point and footprint detection and finally local
tuning of the motion model parameters.

7. CONCLUSIONS

A new approach towards human motion modeling and re-
covery has been presented. It exploits prior knowledge
regarding a person’s movement as well as human body kine-
matics constraints. At this paper only walking has been
modeled. No constraints about the direction or speed are im-
posed. Experimental resulis with different pedestrian, speeds
and walking directions demonstrate robustness of the algo-
rithm with no compromise in computational complexity.
Further work will include the tuning of not enly metion
model’s parameters but also geomelric model’s parameters
in order to find a better fitting. In this way, external objecis
attached to the body (like a handbag or backpack) could be
added to the body and considered as a part of it
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