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ABSTRACT 

This paper presents u new approach for 3 0  gait esti- 
nwtion fronr monocrrlar image seqiiences, rising both a 
kinematics and a wolking motinn models as so~irces of 
prior knowledge. The proposed techniqirr consists of two 
major stages. First1.v. the motion trajectury and ihe pede.s- 
rrian i footprints are detected throughout the segmented 
vi&) seqriencr. Secondly, a.7 the 30 hnrnan model, driven 
by the prior motion model, wolks over this trajectory, the 
joints’ angles are locally adjusted to the pedestrian S 
walking style. This tuning process is performed once per 
walking cycle and not per frame, saving considerable 
CPU time. In addition, local tuning allows handling dis- 
placements at different speeds or directions. The target 
application is the augmentation c~ 2D television 
sequences with depth information that may he used in 
future 3D-7’V systems. 

1. I N T R O D U C T I O N  

3D-TV opens a new and attractive field of applications, 
from more realistic movies to interactive environments. 
However, in order to fully exploit these new 3D-TV sys- 
tems all the existing 2D video material should he converted 
into 3D. Theoretically, it is not possible to completely re- 
cover 3D information from 2D video sequences when no 
other extra information is given or can he estimated. Since 
television sequences are populated with objects with 
known structure and motion such as humans, cars, etc. pri- 
o r  knowledge would arguably aid the recovery of the 
scene. Prior knowledge in the form of kinematics con- 
straints (average size of an articulated structure, degrees of 
freedom (DOFs) for each articulation), or motion dynamics 
(physical laws ruling the ohjecls’ movements), is a com- 
monplace solution to handle the aforementioned problem. 

This work has been carried out as part of the ATTEST project 
(Advanced Three-dimensional TEleviaian System Technologies, IST- 
2001-34396). The fin1 author has been supported by The Romrin .v 
cLIjat PrOgmm 

In real world conditions, 3D human motion modcling 
using monocular image sequences constitutes a complex 
and challenging problcm, which involves difficulties such 
as: self-occlusions, depth amhiguitics of the body parts, 
walking direction estimation, crroneous background scg- 
mentation. etc. (see [ I  J Cor more details). 

In order to avoid some of the aforemcntioncd problcms, 
3D human walking modeling has been usually tackled by 
making simplifying assumptions (e.g. [2] ,  [;I, (41) or by 
imposing constraints on the motion (e.g. walking in a plane 
orthogonal to the camera with a conslant spccd [51, 161). 
Moreover, in ordcr to register the projection of the com- 
puted 3D model with the given image, several features 
have been combined [7] ,  such as skin color, edges, skele- 
ton, optical flow, etc. 

The proposed approach consists in  dividing the given 
walking sequence into scparate walking cycles, which are 
independently processed. An explicit motion model, 
defined by a set of motion curves driving each articulation, 
is used as initial approximation of the motion. These 
curves, obtained from anthropometric studies [6], are indi- 
vidually tuned by the algorithm according to the walking 
attitude of each pedestrian (Fig. 1). The main advantage 
comparing with previous approaches is that matching 
between the projection of the 3D model and the image fea- 
tures is performed once per walking cycle and not per 
frame. A brief description of the 3D body modeling, 
together with depth estimation is given below. The pro- 
posed technique is presented in section 4 and section 5. 
Section 6 shows experimental results and finally conclu- 
sions and future work are introduced in section 7. 

2 . 3 D  B O D Y  M O D E L I N G  

In the current work, similarly than in [XI, an articulated 
structure defined by 16 links (superquadrics).and 22 DOF, 
4 for each arm and leg and 6 for the torso ( 3  for orientation 
and 3 for position) was chosen (Fig. 2(leji)). However, in 
order to reduce the complexity, it was assumed that while 
walking, the legs’ and arms’ movements are’contained in 
parallel planes and that the body’s orientation is always or- 
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Figure 1. Motion curves computed according to [61 
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Figure 2. (I$) Illustration of  a 22 DOF model built with 
superquadrics. (righr) Simpl i f i ed  articulated s t r u c t u r e  ( I 2  DOFs) .  

thogonal to the floor. Hence, the final model is dcrined by 2 
DOF for each arm and leg and 4 for thc torso ( 3  for posi- 
tion plus I for orientation). Thc movements of thc limhs 
are h u e d  on a hierarchical approach using Euler anglcs. 
The hody posture is synthesized by concatenating the 
transformation matrices associated with the joints, starting 
from the torso. 

3 .  D E P T H  E S T I M A T I O N  
The transformation matrices defining the 3D orientation 
(R,)  and position (T,) of the camera coordinate system 
have been assumed known. The mapping between the 
world-coordinate reference frame and the camera-coordi- 
nate reference frame is given by: 

= R c [ ] + T c  (1 )  

where a 3D point in the camera-coordinate reference frame 
is represented by P,(x,. y , .z , ) ,  while in the world-coordi- 
nate reference frame by P w(xs, ,  y,, z,) . The pedestrian’s 
height is assumed to be equal to an average human height. 
Finally, the perspective projection of a point to the image 
plane is defined as: 

where f, is the focal length. 
Using these equations, the 3D world coordinates of  the 

center of the segmented image  are computed (Fig. 3 ( fop- 
right)) for  e v e r y  i n p u t  frame. Fig. 3(boftom-lef t )  i l lustrates 
the center point’s path resulting f rom the estimaled depth va l -  
ues .  The result  is not smoo th  enough since var ia t ions  i n  the 
segmented figure af fec t  depth estimation values. In  order to 
generate a smoother p a t h ,  the estimated d e p t h  values are fil- 
tered by u s i n g  a sp l ine  curve. These depth values w i l l  be 

u s e d  to compute t h e  footprints’ position. In a d d i t i o n ,  since 
the  person’s body is oriented towards  t h e  direction o f  move- 
m e n t ,  t h e  gradient of  the  path is u s e d  to determine the 
model’s orientation, 

4.  F O O T P R I N T  D E T E C T I O N  

We may safely assume that thc center of gravity of a walk- 
ing pcrson is continuously in movement. However, 
throughout walking displaccments there is at least a foot 
with null velocity (pivot foot) and one instant per walking 
cycle in  which both feet are in contact with the floor (both 
with null velocity). The latter happens when the pedestrian 
changes from onc pivot foot to the other. Frames contain- 
ing these configurations will he called unchur frurnes and 
can be easily detected by extracting sroric points through 
the given video scquence. A point is considered as a static 
point spf ( ; . j )  in  frame F, if it  remains a boundaiy point 
bp ( ; , j )  in  at least three consecutive rrames-value com- 

4(fup) shows an illustration of static points (black points) 
detected after processing consecutive frames. 

Static points defining a single footprint do not belong all 
to the same framc but to a sequence of several consecutive 
frames, in  which the foot was in contact with the floor. 
Considcring that foot’s sole is not a rigid surface, a single 
foot generates a set of static points during the time in which 
different parts of it are in contact with the floor. Hence, 
points belonging to the same footprint should be clustered. 

The implemented clustering technique is similar tu a re- 
gion growing using both spatial and temporal information. 
The label associated with >static point (footprint index), 
computed in a frame F srp (i. j )  , is propagated to a ncigh- 
bor static.point s f p ( i + r , . + c )  . r e  { O , l } , c ~  IO, I )  if 
this spatial neighbor pointhas been computed in a temporal 
neighborhood of a maximum of r frames from the consid- 
ered frame F (i.e. IF-A‘ 5r). In the current 
implementation r has been experimentally set to six. The 
proposed footprint labeling technique starts labeling those 
static points contained in the first frame and then propa- 
gates these labels to consecutive frames. At each stage, 
new static points are labeled either wilh new index values 
or with footprint indexes propagated from previous frames. 
An example of the results obtained after applying this tech- 
nique is presented in Fig. 4(bottom-righf). Notice that 
using temporal information, spatial ambiguities generated 
by trajectories parallel to the camera direction or by path 
self-crossing are easily avoided Fig. 4(botfom-left). 

5 . M O T I O N  M O D E L  T U N I N G  

F 
F 

puted experimentally s r p ( j , , ) ~ ~ b p ( ! , j ~ b p ( j , j , . b p ~ j , j ) ) .  F F Ftl Fig. 

” 

The result from the previous clustering stage is a list of 
footprints with a corresponding set of points defining each 
one. In addition to the set of points, each footprint has an 
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Fig. 3. Illustration of the ccntcr point's path computed from a 
video sequcnce of 540 frames 

Fig. 4. (lop) Static points detected for each frame. (bottom-lef) 
All thc computed static points represented in a single image. 
(boffom-righl) Footprints labelled by the spatial and tcmporal 
clustering of the static points. 

associated list containing the numbers of the frames where 
it was detected, @,{Fa. Fb. ..., F,} . Intermediate frames, 
where footprints have not been detected at all (e.g. Fig. 
4(1op-d)), arc also included in that list for continuity. 

The objective is to find those frames w h e r e  both  feet are 
in contact w i t h  the floor (Fig. 4(top) ( a ) - ( b )  and ( e ) .Cn , .  This 
happens in every half  w a l k i n g  cycle i n  severa l  c o n s e c u t i v e  
f r a m e s  (Fig. 4( top)  s h o w s  one aut of four  of Ihe original 
frames). The frame ly ing  i n  the center of those consecutive 
f r a m e s  is defined as  anchor frame. A t  every anchor  frame, 
the articulated h u m a n  body structure reaches a posture w i t h  
m a x i m u m  hip  angles. In  the current i m p l e m e n t a t i o n .  h ip  a n -  
gles are defined b y  the legs a n d  the vertical ax is  conta in ing  
t h e  h i p  joints. This m a x i m u m  v a l u e  is used to compute a 
scale factor K ~ ,  w h i c h  adjusts the  h i p  motion mode l  (Fig. I )  
to Ihe pedestriank w a l k i n g .  This local t u n i n g ,  w i t h i n  a half  
w a l k i n g  cycle, is illustrated i n  Fig. 5 ,  where t h e  computed  
scale factor is ac tua l ly  used for a q u a r t e r  of t h e  w a l k i n g  cy- 
cle, from the c u r r e n t  anchor frame u n t i l  h a l f w a y  to the  n e x t  
one. During the next quarter o f  the w a l k i n g  cycle a n  updated 
scale factor, calculated from the m a x i m u m  hip  angle i n  the 
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4,(0 = K I P [ , )  

Pi2(,) = ' c24 , )  

Dl .hip angle oflefl leg 

6, :hip angle ofright k g  

Porttire I (A. 8. C. D. HI 

Pmtiire 2 IA'. 8'. C'. D'. H'I 

Posture 3 [A". 8". C". D". H"I 

Figorc 5 .  Half walking cycle executed hy using scale fixtors 
(rl, K ~ )  over the hip motion curve presentcd i n  Fig. I .  Spatial 
position of points (0, H, C and R) are computcd by using anglcs 
from thc motion curves and trigonometric relationhips. 

next a n c h o r  f r a m e ,  i s  used. A 2 D  articulated structure is de- 
picted in  Fig.  5 i n  order to m a k e  u n d e r s t a n d i n g  easier. 
However the  t u n i n g  process  is carried out in  3 D  space.'Depth 
values of footprints ( A ,  B )  o r  (A", B") a r c  c o m p u t e d  a s  an 
average of t h e  c e n t e r  point's d e p t h  i n  the f r a m e s  whcre thesc 
f o o t p r i n t s  a p p e a r .  The n u m b e r  of frames in  b e t w e e n  Iwo an- 
chor f r a m e s  defincs t h e  s a m p l i n g  rate of the  mot ion  c u r v e s .  

The differznccs in  walking between people implies that 
a11 the motion curves should be modified by using an 
appropriate scale factor for each one. In order to estimatc 
these factors an error measurement (registration quality 
index: R e / )  is introduced. The proposed RQI measures the 
quality of the matching between the projected 3D model 
and the corresponding walking human figure. It is defined 
as: R Q l  = overlappedArea/totalArea , where total area 
consists of the surface of the projected 3D model plus the 
surface of the walking human figure less the overlapped 
area, while the overlapped area is defined by the overlap of 
these two surfaces. Firstly, the algorithm computes the 
knee scale factor that maximizes the R Q l  values. In every 
iteration, an average RQl is calculated for all the sequence. 
In order to speed up the process the number of frames was 
subsampled. Afterwards, the elbow and shouldcr scale fac- 
tors are estimated similarly. 

6. E X P E R I M E N T A L  R E S U L T S  

The proposed technique has been tested with different out- 
door video sequences. The video sequence used as an 
illustration throughout this work consists of 540 frames of 
240x320 pixels each, which have been segmented using the 
technique presented in [9]. In this sequence, the pedestrian 
follows the trajectory depicted in Fig. 3 and her walking 
speed is variable. Results of the proposed algorithm are 
presented in Fig. 6. Notice that the model is able to follow 
the pedestrian independently of the walking direction, in 
particular when the pedestrian changes direction (see last 
two frames in Fig. 6(top)). The corresponding 3D models 
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Fig. 6. (rop) Final results of a vidco seqiience defincd by 540 frames. (borrom) The corresponding 3D models. 

Fig. 7. Final result of a short video sequence (in white the 
projectcd model). 

are presented in Fig. b(bottorn). The RQl for the total video 
sequences has been 0.59. 

Fig. 7 shows some results of a video sequence dcfined 
by 70 frames of 240x320 pixels each. The segmented input 
frames have bcen provided by the authors of [IO]. In this 
case the RQl value was 0.5. The main reason for this poor 
performance is that the pedestrian is carrying a backpack 
and he  is not wearing so tight clothes. The average CPU 
time for the different stages of the proposed algorithm was 
0.37 seconds per frame. This time includes depth estima- 
tion, static point and footprint detection and finally local 
tuning of the motion model parameters. 

7. CONCLUSIONS 
A new approach towards human motion modeling and re- 
covery has  been presenLed. It exploits prior knowledge 
regarding a person’s movement as well as h u m a n  body kine- 
matics  constraints. A t  t h i s  pape r  only w a l k i n g  has been 
modeled. No constraints about the direction or speed are im-  
posed. Experimental results w i t h  different pedestrian, speeds 
and walking directions demonstrate robustness of the algo- 
rithm with no  compromise in computational complexity. 
Further w o r k  will include the tuning of not o n l y  motion 
model’s parameters but also geometric model’s parameters 
in order to find a better fitting. In this way, external objects 
attached to the  body (like a handbag o r  backpack) could be 
added to the body and considered as  a par t  of it. 
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