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Abstract. This paper presents a direct and stochastic technique for
real time estimation of on board camera position and orientation—the
ego-motion problem. An on board stereo vision system is used. Unlike
existing works, which rely on feature extraction either in the image do-
main or in 3D space, our proposed approach directly estimates the un-
known parameters from the brightness of a stream of stereo pairs. The
pose parameters are tracked using the particle filtering framework which
implicitly enforces the smoothness constraints on the dynamics. The pro-
posed technique can be used in driving assistance applications as well as
in augmented reality applications. Experimental results and comparisons
on urban environments with different road geometries are presented.

1 Introduction

In recent years, several vision based techniques were proposed for advanced
driver assistance systems [1,2,3,4]. They can be broadly classified into two dif-
ferent categories: highways and urban. Most of the techniques proposed for
highways environments are focused on lane and car detection, looking for an
efficient driving assistance system. On the other hand, in general, techniques
for urban environments are focused on collision avoidance or pedestrian
detection.

Of particular interest is the estimation of on board camera position and
orientation related to the current 3D road plane parameters—the ego-motion
problem. Note that since the 3D plane parameters are expressed in the cam-
era coordinate system, the camera position and orientation are equivalent to
the plane parameters. Algorithms for fast road plane estimation are very use-
ful for driver assistance applications as well as for augmented reality
applications.
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The prior knowledge of the environment is a source of information generally
involved in the proposed solutions. For instance, highway driver assistance sys-
tems are based on assumptions such as: i) the vehicle is driven along two parallel
lane markings [5], ii) lane markings, or the road itself, have a constant width [6],
and iii) the camera position as well as its pitch angle (camera orientation with
respect to the road plane) are constant values [7].

Similarly, vision-based urban driver assistance systems, also propose to use
the prior knowledge of the environment to simplify the problem. Some of the
aforementioned assumptions are also used on urban environment, together with
additional assumptions related to urban scenes. In summary, scene prior knowl-
edge has been extensively used. However, making assumptions cannot always
solve problems. It can sometimes provide erroneous results. For instance, con-
stant camera position and orientation, which is a generally used assumption
on highways, is not so valid in an urban scenario. In the latter, camera po-
sition and orientation are continuously modified by factors such as: road
imperfections or artifacts (e.g., rough road, speed bumpers), car accelerations,
uphill/downhill driving, among others. [6] introduces a technique for estimating
vehicle yaw, pitch and roll. It is based on the assumption that some parts of
the road have a constant width (e.g., lane markings). A different approach was
presented in [8]. The authors propose an efficient technique able to cope with
uphill/downhill driving, as well as dynamic pitching of the vehicle. It is based
on a v -disparity representation and Hough transform. The authors propose to
model not only a single plane road—a straight line—but also a non-flat road
geometry—a piecewise linear curve. This method is also limited since a longi-
tudinal profile of the road should be extracted for computing the v -disparity
representation.

In this paper, a new approach based on raw stereo images provided by a stereo
vision system is presented. It aims to compute camera position and orientation,
avoiding most of the assumptions mentioned above. Since the aim is to estimate
the pose of an on board stereo camera from stereo pairs arriving in a sequential
fashion, the particle filtering framework seems very useful. In other words, we
track the pose of the vehicle (stereo camera) given the sequence of stereo pairs.
The proposed technique could be indistinctly used for urban or highway environ-
ments, since it is not based on a specific visual traffic feature extraction neither
in 2D nor in 3D. Our proposed method has a significant advantage over existing
methods since it does not require road segmentation nor dense matching—two
difficult tasks. Moreover, to the best of our knowledge, the work presented in this
paper is the first work estimating road parameters directly from the rawbrightness
images using a particle filter.

The rest of the paper is organized as follows. Section 2 describes the problem
we are focusing on. Section 3 briefly describes a 3D data based method. Section
4 presents the proposed stochastic technique. Section 5 gives some experimental
results and method comparisons. In the sequel, the “road plane parameters” and
the“camera pose parameters” will refer to the same entity.
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(a) (b)

Fig. 1. (a) On board stereo vision sensor with its corresponding coordinate system.
(b) The time-varying road plane parameters d and u.

2 Problem Formulation

Experimental setup. A commercial stereo vision system (Bumblebee from
Point Grey1) was used. It consists of two Sony ICX084 color CCDs with 6mm
focal length lenses. Bumblebee is a pre-calibrated system that does not require
in-field calibration. The baseline of the stereo head is 12cm and it is connected
to the computer by a IEEE-1394 connector. Right and left color images can be
captured at a resolution of 640×480 pixels and a frame rate near to 30 fps.
This vision system includes a software able to provide the 3D data. Figure
1(a) shows an illustration of the on board stereo vision system as well as its
mounting device.

The problem we are focusing on can be stated as follows. Given a stream of
stereo pairs provided by the on board stereo head we like to recover the param-
eters of the road plane for every captured stereo pair. Since we do not use any
feature that is associated with road structure, the computed plane parameters
will completely define the pose of the on board vision sensor. This pose is rep-
resented by the height d and the plane normal u = (ux, uy, uz)T (See Figure
1(b)). Due to the reasons mentioned above, these parameters are not constant
and should be estimated online for every time instant.

Image transfer function. It is well-known [9] that the projections of 3D
points belonging to the same plane onto two different images are related by a
2D projective transform having 8 independent parameters—homography. In our
setup, the right and left images are horizontally rectified2. Let pr(xr , yr) and
pl(xl, yl) be the right and left projection of an arbitrary 3D point P belonging
to the road plane (d, ux, uy, uz) (see Figure 2). In the case of a rectified stereo
pair where the left and right images have the same intrinsic parameters, the
right and left coordinates of corresponding pixels belonging to the road plane
1 [www.ptgrey.com]
2 The use of non-rectified images will not have any theoretical impact on our developed

method. However, the image transfer function will be given by a general homography.
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Fig. 2. The mapping between corresponding left and right road pixels is given by a
linear transform

are related by the following linear transform, i.e., the homography reduces to a
linear mapping:

xl = h1 xr + h2 yr + h3 (1)
yl = yr (2)

where h1, h2, and h3 are function of the intrinsic and extrinsic parameters of the
stereo head and of the plane parameters. For our setup (rectified images with
the same intrinsic parameters), those parameters are given by:

h1 = 1 + b
ux

d
(3)

h2 = b
uy

d
(4)

h3 = −b u0
ux

d
− b v0

uy

d
+ α b

uz

d
(5)

where b is the baseline of the stereo head, α is the focal length in pixels, and
(u0, v0) is the image center—the principal point.

3 3D Data Based Approach

In [10], we proposed an approach for on-line vehicle pose estimation using the
above commercial stereo head. The camera position and orientation—the road
plane parameters—are estimated from raw 3D data. The proposed technique con-
sists of two stages. First, a dense depth map of the scene is computed by the pro-
vided dense matching technique. Second, the parameters of a plane fitting to the
road are estimated using a RANSAC based least squares fitting. Moreover, the sec-
ond stage includes a filtering step that aims at reducing the number of 3D points
that are processed by the RANSAC technique. The proposed technique could be
indistinctly used for urban or highway environments, since it is not based on a
specific visual traffic feature extraction but on raw 3D data points. This technique
has been tested on different urban environments. The proposed algorithm took,
on average, 350 ms per frame. The main drawback of the proposed 3D data tech-
nique is its high CPU time. Moreover, it requires a dense 3D reconstruction of
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the captured images. In the current study, this method is used for comparisons
with the proposed stochastic technique. It can be used to initialize the proposed
approach—providing the solution for the first video frame.

4 A Direct and Stochastic Approach

Our aim is to estimate the pose parameters from the stream of stereo pairs.
In other words, we track the pose over time. In this section, we propose a novel
approach that directly infers the plane parameters from the stereo pair using the
particle filtering framework. The idea of a particle filter (also known as Sequential
Monte Carlo (SMC) algorithm) was independently proposed and used by several
research groups. These algorithms provide flexible tracking frameworks as they
are neither limited to linear systems nor require the noise to be Gaussian and
proved to be more robust to distracting clutter as the randomly sampled particles
allow to maintain several competing hypotheses of the hidden state. Therefore,
the main advantage of particle filtering methods is the fact that any loose of track
will not lead to permanent loss of the object. Note that when the noise can be
modelled as Gaussian and the observation model is linear then the solution will
be given by the Kalman filter.

Particle filtering is an inference process which aims at estimating the unknown
time-t state bt from a set of noisy observations (images), z1:t = {z1, · · · , zt} arriv-
ing in a sequential fashion [11,12]. Two important components of this approach
are the state transition and observation models. The particle filter approximates
the posterior distribution p(bt|z1:t) by a set of weighted particles or samples
{b(j)

t , π
(j)
t }N

j=1. Each element b(j)
t represents the hypothetical state of the object

and π
(j)
t is the corresponding discrete probability. Then, the state estimate can

be set for example to the minimum mean square error or to the maximum a
posteriori (MAP): arg maxbt

p(bt|z1:t).
Based on such generative models, the particle filtering method is a Bayesian

filtering method that recursively evaluates the posterior density of the target
state at each time step conditionally to the history of observations until the
current time.

4.1 Algorithm

Dynamics model. At any given time, the road plane parameters are given
by the plane normal ut, a unit vector, and the distance dt between the camera
center and the plane. These parameters can be encapsulated into a 3-vector ut

dt
.

Therefore, the state vector bt representing the plane parameters will be given
by

bt = (bx(t), by(t), bz(t))T = (
ux(t)

dt
,
uy(t)

dt
,
uz(t)

dt
)T (6)

Note that the vector bt fully describes the current road plane parameters since
the normal vector is a unit vector. Since the camera height and orientation, the
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Fig. 3. The region of interest associated with the right image. In this example, its
height is set to one third of the image height.

plane parameters, are ideally constant, the dynamics of the state vector bt can
be well modelled by a Gaussian noise:

bx(t) = bx(t−1) + εt (7)
by(t) = by(t−1) + εt (8)
bz(t) = bz(t−1) + εt (9)

where ε is a noise (scalar) drawn from a centered Gaussian distribution N (0, σ).
The standard deviation of the noise can be computed from previously recorded
camera pose variations. However, we believe that fixed standard deviations or
context-based standard deviations are more appropriate since they are directly
related to the kind of perturbations and to the video rate.

Observation model. The observation model should relate the state bt (plane
parameters) to the measurement zt (stereo pair). We use the following fact: if
the state vector encodes the actual values of the plane distance and of its normal,
then the registration error between corresponding road pixels in the right and left
images should correspond to a minimum. In our case, the measurement zt is
given by the current stereo pair. The registration error is simply the Sum of
Squared Differences between the right image and the corresponding left image
computed over a given region of interest. The registration error is given by:

e(b) =
1

Np

∑

(xr,yr)∈ROI

(Ir(xr ,yr) − Il(h1 xr+h2 yr+h3,yr))2 (10)

where Np is the number of pixels contained in the region of interest. The above
summation is carried out over the right region of interest. The corresponding
left pixels are computed according to the affine transform (1). The computed
xl = h1 xr + h2 yr + h3 is a non-integer value. Therefore, Il(xl) is set to a linear
interpolation between two neighboring pixels.

Note that the region of interest is a user-defined region. Ideally, this region
should not include non-road objects but as will be seen in the experiments
this is not a hard constraint because we use a stochastic tracking technique.
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In our study, the ROI is set to a rectangular window that roughly covers the
lower part of the original image (one third). Figure 3 illustrates a typical region
of interest.

The observation likelihood is given by

p (zt|bt) =
1√

2π σe

exp
(

−e(bt)
2σ2

e

)
(11)

where σe is a parameter controlling the aperture of the Gaussian distribution.
Computing the state bt from the previous posterior distribution p(bt−1|z1:t−1)

is carried out using the particle filtering framework described in Figure 4.

1. Initialization t = 0: Generate N state samples a(1)
0 , . . . , a(N)

0 according to some
prior density p(b0) and assign them identical weights, w

(1)
0 = . . . = w

(N)
0 = 1/N

2. At time step t, we have N weighted particles (a(N)
t−1, w

(N)
t−1) that approximate the

posterior distribution of the state p(bt−1|z1:(t−1)) at previous time step
(a) Resample the particles proportionally to their weights, i.e. keep only particles

with high weights and remove particles with small ones. Resampled particles
have the same weights

(b) Draw N particles according to the dynamic model p(bt|bt−1 = a(j)
t−1) (7), (8),

and (9). These particles approximate the predicted distribution p(bt|z1:(t−1))
(c) Weight each new particle proportionally to its likelihood:

w
(j)
t =

p(zt|bt = a(j)
t )∑N

m=1 p(zt|bt = a(m)
t )

where p(zt|bt) is given by (11). The set of weighted particles approximates the
posterior p(bt|z1:t)

(d) Give an estimate of the state b̂t as the MAP:

b̂t = arg max
bt

p(bt|z1:t) ≈ arg max
a(j)

t

w
(j)
t

Fig. 4. Particle filter algorithm

Initialization. Note that the initial distribution p(b0) can be either a Dirac
or Gaussian distribution centered on a provided solution. We have used two
methods for estimating this solution: i) the 3D data-based algorithm, and ii) the
differential evolution algorithm [13] which aims at minimizing the registration
error (10).
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5 Experiments

The proposed technique has been tested on different urban environments.

First experiment. The first experiment has been conducted on a short se-
quence of stereo pairs corresponding to a typical urban environment (see Fig-
ure 3). The stereo pairs are of resolution 320 × 240. Here the road is almost
flat and the perturbations are due to accelerations and decelerations of the car.
Figures 5(a) and 5(b) depict the estimated camera height and orientation as a
function of the sequence frames, respectively. The plotted solutions correspond
to the Maximum a Posteriori solution. The solid curves corresponds to an ar-
bitrary ROI of size 270×80 pixels centered at the bottom of the image. The
dotted curves correspond to a ROI covering the road region only (here the ROI
is manually set to 200 × 80 pixels centered at the bottom of the image). The
arbitrary ROI includes some objects that do not belong to the road plane—the
vehicles on the right bound. As can be seen, the estimated solutions associ-
ated with the two cases are almost the same, which suggests that the obstacles
will not have a big impact on the solution. In this experiment the number of
particles N was set to 200 and the parameters were as follows σ = 0.002 and
σe = 1.

In the literature, the pose parameters (road plane parameters) can be repre-
sented by the horizon line. Figure 5(c) depict the vertical position of the horizon
line as a function of the sequence frames. Figure 5(d) illustrates the computed
horizon line for frames 55 and 182.

In order to study the algorithm behavior in the presence of significant oc-
clusions or camera obstructions, we conducted the following experiment. We
used the same sequence of Figure 3. We run the proposed technique described
in Section 4 twice. In the first run the stereo images were used as they are.
In the second run, the right images were modified to simulate a significant oc-
clusion. To this end, we set the vertical half of a set of 20 right frames to a
constant color. The left frames were not modified3. Figure 6 compares the pose
parameters obtained in the two runs. The solid curves were obtained with the
non-occluded images (first run). The dotted curves were obtained in the sec-
ond run. The occlusion starts at frame 40 and ends at frame 60. The upper
part of the figure illustrates the stereo pair 40. As can be seen, the discrep-
ancy that occurs at the occlusion is considerably reduced when the occlusion
disappears.

Second experiment and method comparison. The second experiment has
been conducted on another short sequence corresponding to an uphill driving.
The stereo pairs are of resolution 160 × 120. Figures 7(a) and 7(b) depict
the estimated camera height and orientation as a function of the sequence
frames, respectively. The solid curves correspond to the developed stochastic
approach.The dashed curves correspond to the 3D data based approach

3 Therefore, there is a sudden increase in the registration error.
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Fig. 5. Camera position and orientation, estimated by the particle filter. The plotted
solutions correspond to the Maximum a Posteriori (MAP) solution. The solid curves
corresponds to a ROI having an arbitrary width. The dotted curves correspond to a
ROI containing the road image only.

obtained with full resolution images, i.e., 640 × 480 [10]. Figure 7(c) depicts
the estimated position of the horizon line obtained by three methods: the above
two methods (solid and dashed curves) and a manual method (dotted curve)
based on the intersection of two parallel lines. As can be seen, the horizon
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Fig. 6. Comparing the pose parameters when a significant occlusion or camera ob-
struction occurs. This occlusion starts at frame 40 and ends at frame 60.

line estimated by the proposed featureless approach is closer to the manually
estimated horizon line—assumed to be very close to the ground-truth data. Fig-
ure 7(d) displays the horizon line associated with frame 160. The white line
corresponds to the proposed technique and the black one to the 3D data based
technique.

Note that even the first stereo frame was initialized with the 3D data-based
approach, the solid and dashed curves (the two methods) do not coincide at the
first frame (see Figure 7(a)). This is because only the MAP solution is plotted.
According to the obtained results, the average discrepancy in the height was
about 10 cm4 and in the pitch angle was smaller than one degree.

Figure 8 displays the estimated camera height associated with the sequence
of Figure 7 when the number of particles was set to 300, 200, 100, and 50. As
can be seen, the estimated parameters were very consistent. A similar behavior
was obtained with the pitch angle. A non-optimized C code processes one stereo
pair in 30 ms assuming the size of the ROI is 6000 pixels and the number of
particles is 100. The proposed approach runs almost twelve times faster than
the 3D data-based approach (Section 3). Moreover, our stochastic approach
is faster than many approaches based on elaborated road segmentation and
detection.

4 By assuming that this discrepancy is an upper bound of the camera height error, the
latter can be considered small given the fact that the camera height was estimated
with a small focal length (200 pixels) and with a small baseline.
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Fig. 7. Method comparison for on board camera pose estimation. The solid curves
correspond to the developed stochastic approach and the dashed curves to the 3D
data based approach obtained with full resolution images, i.e., 640× 480. (d) displays
the horizon line associated with frame 160 obtained with two automatic methods: the
proposed technique (white) and the 3D data based technique (black).
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Fig. 8. The estimated camera height obtained by the proposed stochastic approach for
different numbers of particles. From up to bottom N = 300, 200, 100, and 50.
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6 Conclusion

A featureless and stochastic technique for real time ego-motion estimation of on
board vision system has been presented. The method adopts a particle filtering
scheme that uses images’ brightness in its observation likelihood. The advan-
tages of the proposed technique are as follows. First, the technique does need
any feature extraction neither in the image domain nor in 3D space. Second, the
technique inherits the strengths of stochastic tracking approaches. A good per-
formance has been shown in several scenarios—uphill, downhill and a flat road.
Furthermore, the technique can handle significant occlusions. Although it has
been tested on urban environments, it could be also useful on highways scenarios.
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