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Abstract. Existing state of the art optical flow approaches, which are
evaluated on standard datasets such as Middlebury, not necessarily have
a similar performance when evaluated on driving scenarios. This drop on
performance is due to several challenges arising on real scenarios during
driving. Towards this direction, in this paper, we propose a modification
to the regularization term in a variational optical flow formulation, that
notably improves the results, specially in driving scenarios. The proposed
modification consists on using the Laplacian derivatives of flow compo-
nents in the regularization term instead of gradients of flow components.
We show the improvements in results on a standard real image sequences
dataset (KITTI).
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1 Introduction

Computer vision has got applications in innumerable ways to our lives. Recently
the idea of using computer vision for driving assistance has opened new research
opportunities. The need of the safety has steered driver assistance applications
getting interest from both academia and major corporations as well. Having
vision sensors such as cameras mounted on automotives, acquiring information
from such sensors and using it to alert the driver and/or control the vehicle
is the basic structure of advanced driver assistance systems (ADAS). Optical
flow techniques for the motion estimation are the very necessary and important
ingredients in making several ADAS applications such as egomotion estimation,
moving object detection, collision avoidance, automated control a reality. Optical
flow field is the motion vector field indicating the displacement of pixels between
consecutive images in a sequence.

Optical flow techniques, which give dense flow fields, are formulated as vari-
ational energy minimization problems. These methods are referred to as global
methods. On the other hand, the methods that produce sparse flow fields for
some detected feature points on an image are referred to as local methods. The
first local method has been proposed by Lucas and Kanade [1] in 1981. The
variational formulation is also proposed in 1981 by Horn and Schunck [2]. There
have been huge number of contributions in these three decades to improve the
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accuracy of estimated flow field. We can coarsely group such developments into:
formulation of robust and higher order data terms, improving edge preserv-
ing regularizations, adding more features/information to the energy model and
to the minimization techniques of the energy functions. The thesis [3] gives a
detailed survey on the improvements in data term and regularization terms pro-
posed through the last years looking for accurate results. Also an attempt to
evaluate performance of several optical flow techniques is made in [4]. In recent
years, the research on optical flow is getting a lot of interests [5]. Most of the re-
search concentrates on variational methods [2], [6], [7], which produce dense flow
fields. Some of the works deal with preserving flow edges (e.g., [8], [9], [10]) and
formulating sophisticated data terms [11]. A recent work [12] discusses the con-
cepts such as pre-processing, coarse-to-fine warping, graduated non-convexity,
interpolation, derivatives, robustness of penalty functions, median filtering and
proposes a method considering the best of the variants of discussed concepts.

All the contributions mentioned above are targeted, performed and evaluated
on few standard datasets. One of the most well known optical flow benchmark
dataset is Middlebury [13], which contains limited scenarios and image pairs have
small displacements. This dataset do not involve much realistic characteristics.
A big challenge when real dataset with realistic scenarios need to be obtained
lies on the difficulty in obtaining ground-truth optical flow. Recently, Geiger et.
al [14] have proposed a new real dataset of driving scenarios containing large
displacements, specularity, shadows and different illuminations. They have also
provided sparse ground-truth flow field. This dataset is referred to as KITTI
[15]. One can think that the state of the art methods that give the best results
on Middlebury dataset can also perform similarly on KITTI dataset. However,
by analyzing the KITTI flow evalation we can appriciate that such a statement
is wrong due to the difficulties of this particular dataset. There are few attempts
those tried to adapt the existing methods to the driving scenario using epipolar
geometry and rigid body motion information. The approach in [16] estimates
both optical flow and fundamental matrix together. The accuracy of this method
reduces when there is a dynamic scene as one can expect that the driving scenario
is always dynamic.

Driving scenarios vary very largely by environment, weather conditions and
day-light conditions. The driving environment itself involves the situations such
as urban, highway, countryside with different geometry of scenes and textures.
Apart from these the vehicle speed [17] and turning in road also matters causing
very large displacement. So developing an optical flow technique that withstands
all such difficult scenarios is a challenging research topic. Actually there is a lack
of specialized methods for driving scenarios where occurs a variety of difficul-
ties. In the current work, we propose an improvement over an existing state of
the art method [12]. In this work, we specifically deal with the importance of
regularization. We propose a modication to the derivative operator in the reg-
ularization that deals with large variations in speed and rotations that exist in
KITTI dataset. The performance analysis done on the KITTI dataset shows that
the proposed modification improves the results.
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The paper is organized as follows. Section 2 gives an overview of the basic
optical flow formulation and the proposed modification. Experimental results
are provided in section 3 followed by the conclusions in section 4.

2 Optical Flow Overview and Proposed Modification

In this section, we first give an overview of basic variational formulation of optical
flow estimation. In general, variational energy models involve a data term and a
regularization term. The data term formulates the assumption of some matching
characteristics typically the intensity of the pixel and it is also called brightness
constancy assumption (BCA). The classical variational method of Horn and
Schunck [2] assumes the constancy of brightness, which is also called optical
flow constraint (OFC). The OFC can be formulated as: I1(x+ u)− I0(x) = 0,
where I0 and I1 are two images, x = (x1, x2) is the pixel location within the
image space Ω ⊆ R2; u = (u1(x ), u2(x )) is the two-dimensional flow vector.
Linearizing the above equation using first-order Taylor expansion we get OFC as:
(Ix1u1 + Ix2u2 + It)

2 = 0, where subscripts denote the partial derivatives. Using
only OFCs do not provide enough information to infer meaningful flow fields,
making the problem ill-posed. Particularly, optical flow computation suffers from
two issues: first, no information is available in non-textured regions. Second,
one can only compute the normal flow, i.e., the motion perpendicular to the
edges. This problem is generally known as the aperture problem. In order to
solve this problem it is clear that some kind of regularization is needed. The
Horn and Schunk [2] method overcomes this by assuming the resulting flow field
globally smooth all over the image, that can be realized as penalizing large flow
gradients ∇u1 and ∇u2. Combining OFC and homogeneous regularization in a
single variational framework and squaring both constraints yields the following
energy function:

E(u) =

∫
Ω

{ (Ix1u1 + Ix2u2 + It)
2︸ ︷︷ ︸

Data Term

(1)

+ α (|∇u1|2 + |∇u2|2︸ ︷︷ ︸
Regularization

)} dx,

where α is the regularization weight. This energy function is minimized for flow
vectors using corresponding Euler-Lagrange equations. Another alternative way
to solve this is by using dual formulation [18].

Based on the above basic formulation, the authors in [12] proposed a formu-
lation using median filtering in addition to the other improvements proposed
in previous literature and explored by them. It is known that median filtering
at every iteration of flow computation improves the results. The work in [12]
incorporates this filtering heuristics into the objective function. This improved
non-local median filtering based method is called C+NL. In most of the methods
in literature authors try to penalize the gradient of the estimated flow vectors
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using different and combinations of robust penalizing functions. In a driving se-
quence, there occurs large variations in magnitude and orientations due to change
in speed of the vehicle, turn of the vehicle, specularity, and scene dynamics. In
general, driving scenarios are very dynamic with large variations. Hence, in the
current work we propose to penalize the Laplacian of flow components instead of
their gradients. With the basic formulation notation, the equation (1) becomes:

E(u) =

∫
Ω

{ (Ix1u1 + Ix2u2 + It)
2︸ ︷︷ ︸

Data Term

(2)

+ α (|�u1|2 + |�u2|2︸ ︷︷ ︸
Regularization

)} dx.

In summary, we propose to modify the derivative of flow components in the regu-
larization to second derivative as shown in equation (2) in the approach presented
in [12]. We will refer to this method as C+NL-M. With second derivative reg-
ularization, it allows more variations in flow components. Hence, as shown in
the next section the proposed modification results in more accurate optical flow
estimations.

3 Experimental Results

The proposed modification has been evaluated with respect to the state of the
art method C+NL, which is one of the best approach on Middlebury dataset.

Fig. 1. Results for a pair of images; (top) 1st image of the pair; (middle) error map;
and (bottom) computed flow field.
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The analysis of performance is carried out on the standard dataset KITTI [14].
This dataset contains image pairs of real driving scenarios with varied real char-
acteristics that make optical flow computation a real challenge in such scenarios.
This dataset consists of 194 training image pairs and 195 test image pairs. The
results on few of the testing pairs from KITTI are shown in Figures 1, 2 and 3. In
these figures, the (top) is the 1st image of individual pairs, (middle) is the error
map, and the (bottom) is the computed flow field. The red area in the (middle)
indicates the occluded pixels falling outside image boundary.

Table 1. Error values for the image pairs shown in Fig. 1 by C+NL

Error Out-Noc Out-All Avg-Noc Avg-All

2 pixels 32.68 % 42.11 % 11.1 px 17.5 px

3 pixels 30.74 % 40.00 % 11.1 px 17.5 px

4 pixels 29.56 % 38.48 % 11.1 px 17.5 px

5 pixels 28.56 % 37.13 % 11.1 px 17.5 px

Fig. 2. Results for a pair of images; (top) 1st image of the pair; (middle) error map;
and (bottom) computed flow field.

Table 2. Error values for the image pairs shown in Fig. 1 by C+NL-M

Error Out-Noc Out-All Avg-Noc Avg-All

2 pixels 25.27 % 32.90 % 9.1 px 16.1 px

3 pixels 22.43 % 30.04 % 9.1 px 16.1 px

4 pixels 21.14 % 28.73 % 9.1 px 16.1 px

5 pixels 20.19 % 27.75 % 9.1 px 16.1 px
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Fig. 3. Results for a pair of images; (top) 1st image of the pair; (middle) error map;
and (bottom) computed flow field.

The evaluation performed by the KITTI server computes the average num-
ber of bad pixels for non-occluded or all pixels for available ground-truth. This
evaluation is performed over the optical flow computed on testing set with our
modified approach that has been uploaded to the KITTI server. Table 1 shows
the errors for the image pair shown in Fig. 1 for the approach C+NL, whereas
Table 2 shows the errors for the same pair for the proposed approach C+NL-M.
It can be appreciated that C+NL-M gives better results and as presented below
C+NL-M is ranked higher than the C+NL by the KITTI evaluation procedure.
It should be noted that both C+NL and C+NL-M in this work use fast version
of their implementations.

The evaluation table ranks all methods according to the number of non-
occluded erroneous pixels at the specified end-point error threshold. At the time
of submission (on 5th April 2013), our proposed method ranks 8th, whereas
C+NL ranks 16th for 2 pixel threshold. The ranking table from the KITTI web
service is shown in Fig. 4. For 3 pixel threshold our method ranks at 9th as shown
in Fig. 5. This shows that changing the regularization to Laplacian notably im-
proves the results, specifically in the sequences of driving scenarios. At the time
of acceptance of this publication, the previous entry of C+NL in [15] has been
replaced by a modified version by the original authors. Note that our proposed
modified method better performs compared to the original approach in [12].
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Fig. 4. Evaluation table for 2 pixel error threshold (data from [15])

Fig. 5. Evaluation table for 3 pixel error threshold (data from [15])

4 Conclusions

We explore and realized that the state of the art optical flow methods does not
necessarily perform well for driving scenarios. Towards this, in this paper we
propose a modification of the regularization term in a state of the art method.
The derivative of flow components are changed to Laplacian from gradient. The
experimental results are performed on a standard benchmark data set (KITTI)
that contains real image pairs of a driving scenario with challenging characteris-
tics. The evaluation shows that the proposed modification performs better. We
envisage that the KITTI dataset will lead research to the development of new
approaches that can perform in very complex scenarios and our future work
concentrates on this line.
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