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Abstract. This paper presents a novel model to estimate human activ-
ities — a human activity is defined by a set of human actions. The pro-
posed approach is based on the usage of Recurrent Neural Networks
(RNN) and Bayesian inference through the continuous monitoring of
human actions and its surrounding environment. In the current work
human activities are inferred considering not only visual analysis but
also additional resources; external sources of information, such as context
information, are incorporated to contribute to the activity estimation.
The novelty of the proposed approach lies in the way the information
is encoded, so that it can be later associated according to a predefined
semantic structure. Hence, a pattern representing a given activity can be
defined by a set of actions, plus contextual information or other kind of
information that could be relevant to describe the activity. Experimental
results with real data are provided showing the validity of the proposed
approach.

1 Introduction

Human-Machine interaction is an attractive research field in the human assis-
tance domain. One of the main goals is to develop methods for automatic human
activities recognition in order to guarantee an easy communication. Actually,
the automatic human activity recognition is not just needed for human-machine
interaction, but also for tasks related to human behavior understanding in the
health context; suspicious behavior detection in the context of video surveillance;
or activity registration in the context of pattern recognition can be benefited
from it. This ever growing research field finds also applications in the assistance
to elderly persons, where a continuous activity recognition is needed to help elder
people in their everyday life [1].
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The automatic recognition of human activities, expressions and intentions are
multimodal problems; hence, the recognition process may use different sources
of information to improve their results. Examples of such multimodal sources of
information are facial or bodily expressions, voice or audio-visual signals, among
other. Different studies have been published exploiting such a multimodality
nature; for instance [2] introduces a learning framework to identify emotions
from speech using a discriminant function based on Gaussian mixture models.
The authors in [3] propose a multimodal approach for recognizing emotions from
an ensemble of features. It involves face detection, followed by key-point identifi-
cation and feature generation, which are finally used by the emotion recognition.
Finally, in [4] the cross-modality information is explored in an audiovisual emo-
tion recognition system. The authors study the relationship between acoustic
features of the speaker and facial expressions of the interlocutor during dyadic
interactions.

Due to the problem complexity, different taxonomies have been proposed in
the literature related with motion recognition. One of the most widely accepted
has been presented in [5]; it is also considered in the current work and consists
of the following categories: primitive action, action and activity. A primitive
action is an atomic movement that can be described at the level of the human
body parts. An action consists of a set of primitive actions and describes a
complex movement or full corporal expression. Finally, an activity consists of a
set of consecutive actions performed by the person. Examples of the previous
definitions are as follow: i) “putting the right arm in fron” is a primitive action;
ii) “moving an object” is an action; iii) “playing chess” is an activity that
involves primitive action, movement of objects and other actions related to the
rules of the game.

During the last five decades different studies have been carried out to tackle
problems related with the human activities inference. The main goal and moti-
vation of current research in this field is to reach a human-machine interaction
similar to human-human interaction. An interesting review can be found in [6].
Several approaches have been proposed to solve problems related with the activ-
ity understanding of human everyday life. For instance, in the pedestrian detec-
tion domain it is possible to empirically identify safe/unsafe activities of a person
crossing a street. In this case, an automatic system can predict risky situations
due to the recklessness of a pedestrian. In order to develop applications like the
previous one, or some other that involves understanding of human actions, it is
necessary to develop models. These models should cover the full description of
these actions, considering the different variables that affect them (object, cul-
ture, environment, among other) together with their temporal and non-temporal
surrounding framework. The current paper proposes a novel model to recognize
human activities. It is based on RNN and Bayesian inference considering human
movements together with contextual information. The manuscript is organized
as follow: The proposed model is presented in Section 2. Experimental results
and comparisons are provided in Section 3. Finally, conclusions are given in
Section 4.
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2 Proposed Approach

In the proposed approach the actions or human bodily expressions are considered
as input data. They are obtained using a computer vision system like the one
presented in [7]. Therefore, each identified action or human bodily expression
are sent to the inference engine; this inference engine is responsible for encoding,
tracking and activity estimation according to an actions-context-activity asso-
ciation previously defined. The idea behind the proposed approach lies on the
observation of human movements, which were already identified, together with
the context information in order to predict possible interactions of the subject.
In a general way, the proposed inference model can be represented as shown in
Fig. 1.

Fig. 1. General illustration of the proposed approach.

Human bodily expressions are important elements in the observation of
human behavior. These expressions correspond to both movements of the body
limbs (global level analysis) and facial expressions (detailed analysis). In order
to reach the final goal, the information is encoded in such a way that it can
be associated, later on, according to a predefined semantic structure. Hence,
an encoded pattern representing an activity can be defined by a set of actions,
contextual information or other kind of information that could be relevant to
describe the given activity. Next, the three main elements of the proposed app-
roach are described. First, the methodology to generate patterns that encode
the information is introduced in Section 2.1. Then, the inference engine based
on recurrent neural network is presented in Section 2.2. Finally, the architecture
used for tracking identified events is summarized in Section 2.3.
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2.1 Actions-Activity-Context Patterns

One of the first problems to solve after recognizing actions and context is to
abstract their representation. In the current work it is proposed a model that
uses RNN as resources of Associative Memory, considering binary patterns and
two Hopfield Neural Networks [8] [9] in a long and short term approach.

In this sense, let Ac = {ac
(b)
1 , . . . , ac

(b)
k } be a set of actions, where k is the

number of actions or context information that can be identified by the recognition
system, and b is the set of bits, representing an associated event. Assuming a
Hopfield recurrent neural network is used, then, the total number of neurons in
the network will be I = b2. In other words, an activity can be represented by a
matrix x

(b×b)
n , where xn ⊂ Ac and n = {1, 2, . . . �0.138I�} (0.138 represents the

theoretical storage capacity as will be defined in eq (3)). Figure 2(left) illustrates
the structure of a pattern of activity.

Fig. 2. Activity pattern: (left) activity pattern structure; (right) activity patterns
(Pi) with their representative events associated to them.

As it was mentioned in the introduction, one of the goals of current approach
is to support the recognition of unsorted events. The previous statement means
that it could exist a semantic similarity between a set of events, which have
been observed in a different order. Additionally, this provides to the system the
capability to estimate an activity even in those cases where the observed events
are related with some other activity already known.

In this context, the neural network takes into account representative observa-
tions within a given activity, and then the probability of the candidate activities
could change as soon as a new event occurs. In the “retrieval” phase an obser-
vation will induce to a known state, converging in each new observation to some
trained pattern. The resulting patterns could have variations that can be mea-
sured using the Hamming distance [10] at each new observation presented to the
network.

In the current work, the inputs and outputs of the neural network correspond
to binary patterns (x(I)

n ), which represent a combination of observable events
(each event is encoded using 8 bits). Initially, these combinations are randomly
defined using Linux Pseudo-Random Number Generator (LRNG) [11] [12]. The
initial combinations, randomly generated, are used to define a set of observable
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events k, without semantic relationships between them. Hence, in order to have
a balance between the resulting patterns (unbias), they are discriminated so that
P (xi(j) = 1) = P (xi(j) = −1) = 1/2, where j = {1, 2, . . . , I}.

Unfortunately, the process presented above for the random generation of pat-
terns and posterior discrimination, do not provide enough information regarding
the correlation between them. For this reason, each activity (semantic relation-
ship between events) will be assigned to the less correlated patterns, which are
selected by means of a cross-correlation criterion based on the Pearson’s cor-
relation (PPMCC or PCC) [13,14]. The Pearson’s correlation coefficient (rxy)
is defined as the covariance of two variables divided by the product of their
standard deviations; it is expressed as:

rxy =
n

∑
xiyi − ∑

xiyi√
n

∑
x2
i − (

∑
xi)2

√
n

∑
y2
i − (

∑
yi)2

. (1)

The correlation coefficient spans [−1, 1], where 1 means that the linear equa-
tion perfectly describes the relation between X and Y , with all the data lying on
a straight line where X and Y increase. On the contrary, −1 means that all the
data lie on the straight line where X and Y decrease. Hence, the 0 value repre-
sents the lack of linear correlation between the variables. Figure 2(right) shows
five activity patterns with their corresponding associated events (i.e., actions or
context), where each alphanumeric character represents a binary code according
with the 8-bits ASCII table.

Once all the patterns have been defined, a semantic annotation is given to
them according to a specific application (e.g., events representing actions or
context information and patterns representing activities). Table 1 shows the
results of the selection process based on the Pearson’s correlation.

Table 1. Cross-correlation using the Pearson’s correlation.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P1 1 0.25 0.188 0.5 0.312 0.5 0.375 0.562 0.312 0.438

P2 0.25 1 0.375 0.438 0.438 0.125 0.562 0.312 0.25 0.5

P3 0.188 0.375 1 0.312 0.438 0.438 0.438 0.25 0.562 0.125

P4 0.5 0.438 0.312 1 0.312 0.438 0.375 0.5 0.562 0.438

P5 0.312 0.438 0.438 0.312 1 0.375 0.625 0.188 0.188 0.562

P6 0.5 0.125 0.438 0.438 0.375 1 0.312 0.312 0.688 0.188

P7 0.375 0.562 0.438 0.375 0.625 0.312 1 0.062 0.25 0.5

P8 0.562 0.312 0.25 0.5 0.188 0.312 0.062 1 0.5 0.375

P9 0.312 0.25 0.562 0.562 0.188 0.688 0.25 0.5 1 0.062

P10 0.438 0.5 0.125 0.438 0.562 0.188 0.5 0.375 0.062 1

2.2 Recurrent Neural Network Based Approach

The Hopfield neural network has two main applications. In the first one they
are used as associative memories, while in the second one they are used to solve
optimization problems. On the other hand, the inference process in the context
of recurrent neural networks could be faced in two ways: the first one is by
considering the internal probabilistic constitution of the neural network, while
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the second one, is focused on the probabilistic meaning of the results, being the
latter one the approach considered in the current work.

According to [15], there is a difference between the theoretical storage capac-
ity and the experimental one, both using the Hebbian learning rule as well as the
pseudo-inverse rule (also referred to as projection learning rule) [16]; the main
reasons for these differences [9] are:

– The high correlation between training patterns; the correlation between pat-
terns reduces the performance of the network.

– The storage capacity of Hopfield networks is related to the sparsity of train-
ing patterns.

– The global inibition is another factor that can affect the storage capacity.

The number of patterns to be stored can be increased if a small error is
accepted. In the current work a storage of N = 8 patterns, of I = 64 bits, is
considered. Hence, the theoretical error due to bit swapping in the first iteration
is about 0.2%; this error will be larger if next iterations are considered.

Regarding the rate between the number of stored patterns and the number
of neurons N/I, [17] states that the maximum number of patters to be stored,
with an acceptable maximum error value, is defined by the following expression
(this statement is shared by [18]):

Nmax � I

4lnI + 2ln(1/ε)
, (2)

actually, in [18] a critical limit is presented, which considers the abrupt drop in
the performance of the network with the increase of the ratio N/I; this critical
limit is defined as:

Ncrit = 0.138I. (3)

As presented above, the balanced combination of each pattern and the selec-
tion of those with the lowest correlation are intended to reach a fair initial
distribution of the probabilities of each state. Later on, during the training of
the network, these probabilities are biased toward the most active state. In other
words, if in the activity “activ1” the event “a1” is performed more than one time,
this event will have a higher weight in the given activity, which will be reflected
in the neural network. In the same way, activities that have been trained using
the proposed model, will be tolerant to the presence of events that may belong
to other activities, or events identified by the system (computer vision or other
systems).

2.3 Tracking of Identified Events

Initially, all the set of actions-activity-context patterns (xn) are stored in the
main associative memory block (long-term), considering the limit of n defined
in the previous section (see Fig. 1). Then, as soon as a new event is identified,
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the second block of memory (shot-term) stores all the patterns xn that contain
a new action, these selected patterns are referred to as immediate candidates:

Xsel = {∀xn ∈ X|ack ∈ xn, n = {1, 2, . . . , �0.138I�}}. (4)

The new set of patterns Xsel (Xsel ⊂ X) is temporally stored, so that the
recurrent network responsible of storing these patterns will behave like a short-
term memory. In this way, the patterns in time t − 1 could be “forgotten” when
a new event appears (Fig. 3).

Fig. 3. Temporal storing of immediate candidates.

Considering the constraints in the storage capacity of activity patterns, the
probability of a candidate activity being one of the learned activities, given
the appearance of a new action, can be determined using the Bayes theorem
(assuming that ack ∈ X):

P (xn|ack) =
P (xn)P (ack|xn)

P (ack)
. (5)

The aim of the short-term resource is to provide the system with a knowledge
base to be used during the appearance of the first actions.

After storing (memorizing) the immediate candidates, the observed event is
kept in a historical register hist(acj); for each new observed event, a new set
of patterns H to be presented to the network is created from hist, fulfilling
xn(i) = H(acj), for ∀i ∈ �| ≤ b and ∀j ∈ �|j ≤ k.

In this way, at least one of the patterns from H will be an incomplete and/or
partially wrong version of xn. Hence, for every new observation, considering a
64-bits activity pattern (8 observable events of 8 bits), it will exist a pattern to
be presented to the network with an overlap of at least 1/8 with some of the
patterns initially learned. Once the neural network returns the estimated activity
(with an acceptance rate based on the mean and variance of Hamming distance
values between the stored patterns in long-term memory xn and those retrieved
from it xdes), the total content in the historical register hist is deleted; starting
again with a new and continuous loop of analysis. In a particular situation, if
the information presented to the long-term memory is not enough, the patterns
in H will be presented to the short-term memory, the probability of retrieving
a correct patterns could be obtained from the equation (5) when ack ∈ X.
Although the short term memory tends to give a strong conclusion (due to the
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reduced number of stored patterns), it is not reliable. For instance, it could
give an answer even in the case when an observed event does not belong to some
learned patterns, in this particular case, the obtained conclusion would be wrong
(false positive).

The proposed model allows the estimation of an activity from 1/b of the
actions that define it, considering the theoretical limit of storage capacity of
Hopfield neural networks (assuming a correlation between patterns (rx,y → 0)),
fixed as Nmax = �0.138I�.

3 Experimental Results

The proposed approach has been evaluated with the Hollywood data set [19]. It
contains annotations of actions performed in scenes of different films. Figure 4
shows some frames of this data set; they correspond to the following actions:
“AnswerPhone”; “GetOutCar” and “Kiss”.

Fig. 4. Frames from the Hollywood data set, corresponding to the following actions:
(left) AnswerPhone; (middle) GetOutCar; (right) Kiss.

Table 2 shows the annotations of identified actions in different time intervals
for different films (they are provided by [19] and are used as ground truth). In
the current work these annotations have been used to estimate the titles of the
video sequences during the actions observation.

Table 2. Annotated actions, provided by [19], of different films.

Video Sequence Time Annotation Video Sequence Time Annotation

“As Good As It Gets – 00259.avi”? (10-125) < SitDown > “LOR-FellowshipOfTheRing – 01181.avi”? (10-96) < StandUp >

“As Good As It Gets – 01311.avi”? (1-180) < StandUp > “LOR-FellowshipOfTheRing – 01181.avi”? (1796-1875) < SitUp >

“As Good As It Gets – 01400.avi”? (620-730) < Kiss > “LOR-FellowshipOfTheRing – 01286.avi”? (1-80) < SitUp >

“As Good As It Gets – 01619.avi”? (1-50) < Kiss > “LOR-FellowshipOfTheRing – 01494.avi”? (25-232) < SitUp >

“As Good As It Gets – 01834.avi”? (150-450) < SitDown > “LOR-FellowshipOfTheRing – 01712.avi”? (246-372 < Kiss >

“As Good As It Gets – 01935.avi”? (1-209) < StandUp > “LOR-FellowshipOfTheRing – 02501.avi”? (65-93) < SitUp >

“As Good As It Gets – 02002.avi”? (1-664) < Kiss > “LOR-FellowshipOfTheRing – 02707.avi”? (1-410) < HugPerson >

“Erin Brockovich – 00816.avi”? (1-50) < StandUp > “Dead Poets Society – 00068.avi”? (18-55) < SitDown >

“Erin Brockovich – 01233.avi”? (450-530) < StandUp > “Dead Poets Society – 00148.avi”? (163-233) < HandShake >

“Erin Brockovich – 01768.avi”? (43-141) < AnswerPhone > “Dead Poets Society – 00205.avi”? (1-89) < HandShake >

“Erin Brockovich – 01916.avi”? (1-91) < StandUp > “Dead Poets Society – 01587.avi”? (1-377) < SitDown >

“Erin Brockovich – 02110.avi”? (1-180) < SitDown > “Dead Poets Society – 01587.avi”? (1-377) < Kiss >

“Erin Brockovich – 02137.avi”? (1-180) < StandUp > “Dead Poets Society – 01741.avi”? (144-195) < AnswerPhone >

“Erin Brockovich – 02262.avi”? (130-241) < SitDown > “Dead Poets Society – 02590.avi”? (148-230) < SitUp >

“Pianist, The – 01525.avi”? (1-141) < HandShake >

“Pianist, The – 01285.avi”? (1-150) < StandUp > “Pianist, The – 01285.avi”? (360-445) < GetOutCar >

“Pianist, The – 00926.avi”? (100-367) < HugPerson > “Pianist, The – 01255.avi”? (450-716) < HugPerson >

“Pianist, The – 01334.avi”? (350-530) < SitDown > “Pianist, The – 01285.avi”? (925-995) < HandShake >
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Each action has been encoded and selected according to the lowest Pear-
son’s correlation. Table 3 shows patterns (in ASCII format) corresponding to
the annotated actions according to the video sequences presented in Table 2.
Each set of patterns defines an activity representing the title of the film.
The annotated actions corresponds to: f=< SitDown >; Y=< StandUP >;
R=< Kiss >; K=< AnswerPhone >; q=< HandShake >; |=< SitUP > and
g=< HugPerson >. The Figure 5 depicts the codified patterns corresponding
to the defined activities in Table 3.

Table 3. Titles (activities) in Hollywood data set [19] with their corresponding codified
annotations (actions).

Title Codified Annotations

As Good As It Gets fY RRfY R

Pianist, The ggY Xqfq

Dead Poets Society fqqY RK|
Erin Brockovich Y Y KY fY f

LOR-FellowshipOfTheRing Y |||R|g

Fig. 5. Activities defined in Table 3 (left to right corresponds to films from top to
bottom).

As soon as a new action is observed, the different stages of the proposed
model are performed: selection of possible activities, generation of candidate
patterns, presentation of candidates to the network; and finally, selection of the
highest probability answer. Table 4 presents the results estimated by the model,
using the annotations of the film “As Good As It Gets”. Each row in the “Obs.
Actions” column corresponds to the set of actions that have been identified in
different pieces of the film. The inference process is shown to the extent that
actions are observed. It can be appreciated that in the second observation the
obtained conclusion corresponds with the activity that has the most represen-
tative action (see the activities defined in Table 3), considering all the previous
actions associated to the activities. In this example, the correct result can be
obtained just when a new action is observed. This fact is also appreciated in
Table 5, where an action that do not belong to the activity of interest (AOI)
is observed; a similar trend is observed, but in this case due to the previous
wrong information, showing the influence of the learning process (associative
reinforcement between events and activities) in the results given by the model.
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Table 4. Inference of films’ titles according to observed actions.

Films titles

Obs. Obs. Actions Good... (AOI) Pianist... Poets... Erin...

1 f 35.29% – 17.65% 17.65%

2 fY 70.59% 17.65% 17.65% 82.35%

3 fYR 100% 17.65% 29.41% 82.35%

4 fYRR 100% 17.65% 29.41% 82.35%

Table 5. Inference of films’ titles according to observed actions and by inserting a
wrong observation (q).

Films titles

Obs. Obs. Actions Good... (AOI) Pianist... Poets... Erin...

1 f 40.0% – 30% 30%

2 fq 14.29% 7.14% 21.43% –

3 fqY 72.22% 27.78% 44.44% 22.22%

4 fqYR 100% 82.35% 58.82% 82.35%

4 Conclusions

The current work presents an approach for events tracking captured by a vision
system and other sensors that can provide contextual information towards the
automatic inference of human activities. The usage of states in a recurrent neu-
ral network for representing human actions and context information has been
formulated. Additionally, it proposes a cyclic model for tracking actions and
inferring activities, which consider predominant actions that influence it. In this
way, it was possible to incorporate two common properties present in everyday
life: first, the fact that different persons can do different set of actions during the
performance of a given activity; second, the inclusion of contextual information,
which affect the decision criteria during the automatic inference of activities as
an association of movements or corporal expressions. The model proposed for
the activity inference has been described supporting the selected options.

The results obtained with the Hopfield network opens the possibility to incor-
porate other recurrent neural networks working as associative memory within the
proposed cyclic model. Finally, the state of the art on recurrent neural networks,
shows the potential of these techniques for applications related with associative
memory. The current computational capability represents an appealing factor
for implementing techniques as the ones proposed in the current work.
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