
A Novel Approach to Geometric Fitting of

Implicit Quadrics�

Mohammad Rouhani and Angel D. Sappa

Computer Vision Center, Edifici O Campus UAB
08193 Bellaterra, Barcelona, Spain
{rouhani,asappa}@cvc.uab.es

Abstract. This paper presents a novel approach for estimating the geo-
metric distance from a given point to the corresponding implicit quadric
curve/surface. The proposed estimation is based on the height of a tetra-
hedron, which is used as a coarse but reliable estimation of the real dis-
tance. The estimated distance is then used for finding the best set of
quadric parameters, by means of the Levenberg-Marquardt algorithm,
which is a common framework in other geometric fitting approaches.
Comparisons of the proposed approach with previous ones are provided
to show both improvements in CPU time as well as in the accuracy of
the obtained results.

1 Introduction

Fitting a curve or surface to a given cloud of points is a fundamental problem
in computer vision and geometric modelling. It has been an active topic during
the last two decades [1,2]. The appearance of new sensors, which allow to obtain
a large amount of 3D data in a reduced time, and the need to process all this
information efficiently have opened new challenges looking for efficient fitting
approaches.

Although there are many tools in Computer Aided Design to represent curves
and surfaces, the implicit representation is more efficient since it avoids the
parametrization problem (i.e., difficulties arise especially when one should face
up to unorganized cloud of points). The surface is described as the set of points
X satisfying the equation f(c,X) = 0; where c is the set of parameters. This
set of points is also referred as zero set of f . Although different function spaces
could be used for the implicit representation (e.g., B-Spline functions [2,3], and
radial basis functions [4]) in the current work the implicit polynomial case is
considered.

Having represented the surface as an implicit polynomial, the fitting problem
can be modelled as an optimization problem: finding the set of parameters that
minimize some distance measures between the given set of points and the fitted
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curve or surface. The most natural way to define the distance is to measure the
deviation of the function values from the expected value (i.e., zero) at each given
point. This measure criterion is referred in the literature as algebraic distance [5,6].

Another distance measure, referred as orthogonal or geometric distance, is de-
fined as the shortest distance from the given point to the fitting surface. On the
contrary to the algebraic distance, this distance has a direct link to the geometry
of the data, and its final result makes sense as a consequence. Although this def-
inition of the distance is complete and leads us to the best fitting result, it has a
nonlinear nature with the model parameter, that discourages its use. On the other
hand, since there is no closed formula to compute the shortest distance, two strate-
gies have been proposed in the literature: (a) compute the orthogonal distance by
means of an iterative approach (e.g., [2,7]); and (b) compute an approximation to
this distance and use it as the residual value of the point (e.g., [8,9]).

Algebraic and geometric distances are two different viewpoints for the fitting
problem. Although both of them could be exploited for some optimization models
leading to the optimal parameters in their own sense, the frameworks they use
are different. Algebraic fitting methods are based on quadratic optimization
model (least square) giving a non-iterative unique solution, while the geometric
ones are based on some non-linear models giving the solution through iterative
algorithms.

The current work proposes a novel technique for an efficient estimation of the
geometric distance, from a given point p to the corresponding implicit quadric
fitting surface. This distance is computationally efficient as well as a reliable
approximation. This geometric criterion is later on used in an optimization
framework. The rest of the paper is organized as follows. Section 2 describes
the problem and introduces related work. The proposed technique is presented
in section 3. Section 4 gives experimental results and comparisons. Finally,
conclusion and future work are presented in section 5.

2 Related Work

In this section, the two major approaches in surface fitting: algebraic and geo-
metric, are presented in more details to show the motivations of the proposed
approach. Furthermore, a brief introduction to the optimization method used in
the current work is also given.

Fitting problems aim at fining a curve or surface close to a given cloud of
points X = {pi}n

i=1. Before explaining the meaning of close we should define the
implicit surface we want to find. Without loss of generality let us consider the
quadratic implicit surfaces:

fc(x, y, z) = c1x
2 + c2y

2 + c3z
2 + c4xy + c5xz (1)

+c6yz + c7x + c8y + c9z + 1 = 0,

where c = (c1, ..., c9)T is the vector we are searching for. This implicit represen-
tation provides us many facilities; e.g., for closed surfaces we can easily find out
whether a point is inside or outside of the surface just through checking the sign
of f at the given point.
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2.1 Algebraic Approaches

Since the implicit representation is used, a point is on the surface if and only
if the output of fc in (1) is zero at the given point. It leads us to define the
following optimization criterion, which is known as algebraic approach:∑

X

f2
c (x, y, z). (2)

This minimization problem is also equivalent to the overdetermined system
Mc = b, where M is the monomial matrix computed at given points, and b
is a column vector containing -1. Regardless to these different viewpoints, the
optimal solution could be computed through least square solutions:

c = (MT M)−1MT b. (3)

Algebraic distance has a simple formulation and a straightforward solution that
is not iterative. Unfortunately, this method could fail for real world data set,
where there is no information about the distribution of noise. As an illustration
Fig. 1(a) shows how this method, despite its simplicity, fails to fit a cloud of
points1 picked from a spherical patch. Here the algebraic method tries to put
the value of implicit function close to zero, and because of this algebraic criterion
the curvature of the data, which is an important geometric property, is missed.
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Fig. 1. (a) A cloud of 3D real data fitted through the simple algebraic approach (3).
Some clusters of points are inside the surface and some outside. (b) Result of the 3L
algorithm [6] (solid line). Since the data points are not uniformly distributed it fails to
fit them; while, in this case, the simple algebraic (3) is able to give the exact solution
(dotted line).

Two common problems, inherent to algebraic approaches, are (a) computa-
tional instability of the zero set; and (b) lack of geometric sense in this procedure.
However, the non-iterative framework of algebraic approaches has attracted the
attention of many researchers. For instance, focussing on the instability prob-
lem, Hezer et al. [5] analyze the sensitivity of the zero set to small coefficient

1 K2T structured light camera system, University of South Florida.



124 M. Rouhani and A.D. Sappa

changes and minimize an upper bound of the error in order to have a more sta-
ble output. In addition to the instability problem, algebraic method does not
have any geometric meaning. Indeed what is happening inside the procedure
is just to minimize a quadratic optimization function—which is equivalent to
an overdetermined system of equations. Keren et al. [10] try to constrain the
surface parameter space in order to obtain a geometrically reasonable output.
Blane et al. [6] and Tasdizen et al. [11] in parallel researches propose to add
some geometric concept inside the optimization problem.

In [11] they try to maintain the estimated gradient value at each data points
while they fit the data. In [6] Blane et al. add two complementary sets to the
given data set, which are a shrunken and an expanded version of the original data
set (this method is referred as 3L algorithm, which stands for 3 level set). After
finding these complementary sets through local regression, they try to find an
implicit function not only gaining zero in the original data set, but achieving +1
and -1 respectively in the shrunken and expanded sets. Although it is a robust
and widely used approach in the literature, it could fail for some simple cases
even in 2D. Figure 1(b) shows a set of non-uniformly distributed points on an
ellipse. Because of two other supplementary sets, the 3L algorithm tried to find
a compromise between all three sets, so fails to fit the right ellipse. In the figure
the dotted line ellipse corresponds to the output of 3L, while the solid line one
is the output of simple algebraic (3), which manages to fit it.

2.2 Geometric Approaches

In addition to algebraic methods, there is another category based on geometric
distance—or an approximation of it—usually referred as geometric approach.
In this case the distance between a point and the surface is usually defined as
the shortest distance between this point and its correspondence on the surface.
Thus, in general case of geometric methods we have the following optimization
problem:

minc(
n∑

i=1

minp̂id(pi, p̂i)), (4)

where each p̂i is the correspondence of pi on the surface.
Theoretically, both unknown surface parameters and the correspondences

must be found simultaneously, but practically this problem is tackled by first
assuming an initial surface, and then refine it till convergence is reached. So, the
fitting problem is split up into two stages: 1) point correspondence search; and
2) surface parameter refinement. The first stage deals with the inner part of (4),
while the second one concerns about the outer one.

Point correspondence search: Regarding to the first stage, we need to find
the correspondence for each data point. For this purpose, two different strategies
have been proposed in the literature: (a) finding the shortest distance by solving
a non-linear system (e.g., [2,7]); and (b) computing an estimation of the shortest
distance (e.g., [8,9]).
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Fig. 2. Orthogonal distance estimation between p and a quadric curve. (a) The shortest
distance is found using the iterative method proposed by [7]. (b) An estimation of the
curve orientation, through applying PCA in a local neighborhood, used by [9]. (c)
Distance estimation based on the proposed approach (i.e., by finding the Triangle
Height, dTH ).

In [7] Ahn et al. propose the direct method to find the correspondence (or foot-
point) on the surface, which is based on its geometric properties. This foot-point, p̂,
is somewhere on the surface satisfying f(p̂) = 0. Furthermore, the line connecting
the data point with the foot-point must be parallel to the ∇f at the foot-point,
where∇ is the gradient operator (see Fig. 2(a)). In other words, the equation∇f×
(p̂− p) = 0 must be satisfied. Merging these two conditions, the following system
of equations must be solved: (

fc

∇fc × (p̂ − p)

)
= 0. (5)

This equation could be solved by the Newton method for a non-linear system of
equations.

Although this method is precise enough, and even covers some well-known
method in the literature, like [12] and [13], it is quite time-consuming due to the
iterations. Fig. 3 illustrate the iterative approach leading to the approximated
foot-point. In each iteration, the point moves to a lower level curve till reaching
the zero level curve. Simultaneously, the gradient direction at each iteration is
adapted to be parallel to the connecting line.

Instead of computing the real shortest distance, [9] proposes some estimation
avoiding iteration. For the correspondence problem they proposed to restrict
the search along the estimated normal direction. The estimated normal at each
data point is computed by using principal components analysis (PCA). Precisely
speaking, the covariance matrix of a set of points in the neighborhood is com-
puted at first, and then its smallest eigenvector2 is adopted as the orientation.
(Fig. 2(b) shows an illustration in 2D space).

After finding the correspondence set for the given data set, the surface param-
eters should be refined through some minimization. However, on the contrary to
algebraic approaches where least square method gives a unique and direct solu-
tion, geometric approaches need a different framework for finding the optimal set

2 Eigenvector associated with the smallest eigenvalue.
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Fig. 3. Orthogonal distance computed by means of the iterative approach proposed in
[7]. Solid curve correspond to the f(c, X) = 0, while dotted ones show the level curves
obtained after each iteration of (5); p̂ converges to the curve after four iterations.

of parameters. Next section presents one of the most well-known optimization
frameworks adopted by most of geometric approaches.

Surface parameters refinement: As a result from the previous stage the set
of points {p̂i}n

i=1, corresponding to every pi in X has been found. Hence, now an
optimization framework is used to refine the surface parameter. LevenbergMar-
quardt algorithm (LMA) is a well-known method in non-linear optimization [14],
which in some sense interpolates between the GaussNewton algorithm and the
gradient descent.

In order to handle LMA, the value of the functional (inner part of (4)) and
its partial derivatives, which is expressed in the Jacobian matrix, should be
provided. Since each p̂i lies on the surface, every distance d(pi, p̂i) can be easily
expressed as a function of surface parameters:

di(c) = ‖pi − p̂i‖2, (6)

more precisely, equation f(c, p̂i) = 0 provides a link between surface parameters
and {p̂i}n

i=1 set, and distances as a consequence. This relationship is used to
compute the Jacobian matrix:

Jij =
∂di

∂cj
= −∂di

∂p̂i

∂f/∂cj

∂f/∂p̂i
. (7)

Having estimated the geometric distance (6) and its Jacobian matrix (7), it is
easy to refine the surface parameter through LMA as follows:

ct+1 = ct + β�c,

(JT J + λdiag(JT J))�c = JT D, (8)

where β is the refinement step; �c represents the refinement vector for the
surface parameters; λ is the damping parameter in LMA; and the vector D =
(d1(ct), ..., dn(ct))T corresponds to the distances. Parameter refinement (8) must
be repeated till convergence is reached.
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3 Proposed Approach

So far, the geometric approaches have been concerned about the best direction
(i.e., the shortest distance) in each data point toward the surface. Taubin [12] ap-
proximate this direction with the gradient vector of the level set passing through
the data point. Ahn et al. [7] present different optimization models in order to
reach a better approximation of the best direction. They show that the method
used by Taubin is a special case of their general method.

In the current work, a novel estimation of the geometric distance is presented,
which despite other approaches, is not based on a single direction. First a tetra-
hedron is constructed, and then the geometric distance is approximated with
the tetrahedron height segment; this tetrahedron is easily defined by the given
point and three intersections satisfying fc(x, yp, zp) = 0, fc(xp, y, zp) = 0 and
fc(xp, yp, z) = 0, where (xp, yp, zp) is the given point. Fig. 2(c) shows an illus-
tration for the 2D case; the 3D case in depicted in Fig. 4(a).
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Fig. 4. Transition from a tetrahedron height vector to a triangle height vector. (a)
Illustration of two surfaces with their corresponding intersection points (planar trian-
gular patch (r, s, t)). (b) Angle between tetrahedron height segment and (pt) segment,
as a function of distance |pt|.

In the particular case tackled in this work, since the fitted surface is defined
by an implicit quadric equation fc(x, y, z) = 0, the intersection points can be
easily found by solving some quadratic equations. Each equation gives two roots,
the closest one to the data point is selected as the vertex of the tetrahedron.

A direct formula to describe the proposed distance can be found. Let r, s and
t be the three intersections with a quadric surface, which create a triangular
planar patch (see Fig. 4(a)). Since the volume of the tetrahedron is defined as
the product of the area of each base by its corresponding height, three pairs of
expressions lead us to the same value. Hence, the height of the tetrahedron, dTH ,
could easily be computed from the following relationship:

(|rs × rt|.|dTH |)/6 = (|pr|.|ps|.|pt|)/6 = υ, (9)

where × refers to the cross product operator between two vectors. Similar re-
lationship can be found in the 2D case, but by using the area of the triangle
instead of the volume.
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Note that in the extreme cases, when intersections with some of the directions
(1, 0, 0), (0, 1, 0), (0, 0, 1) cannot be found, the 3D case becomes into: i) the 2D
case (two intersections); ii) only one intersection, which has been used in [8];
or iii) the point p is an outlier since none of the three directions intersects
the implicit quadric surface. Transitions between different cases are smoothly
reached; Fig. 4(a) shows an illustration where one of the vertices of the triangular
patch (r, s, t) moves away from current position up to the extreme—i.e., no
intersection between vertex t and the implicit surface can be found3; the smooth
transition from the tetrahedron height segment orientation to the triangle height
segment orientation can be appreciated in the illustration of Fig. 4(b).

This proposed measurement criterion can be exploited in a fitting framework.
Indeed, the function

∑
d2

i could be a good optimization model for the surface
fitting, where each di is the proposed distance, dTH , for the point pi in the data
set. Based on (9), this function has a nonlinear relationship with the surface
parameters. Hence, for this part a nonlinear optimization method is needed to
find the best set of parameters.

In the current work, the LMA is adopted, which has been presented in
section 2.2. As mentioned above, the Jacobian matrix, which shows the sensitiv-
ity of each di with respect to the parameter vector, needs to be computed. For
this purpose (9) could be used to describe dTH based on the surface parameters,
and consequently we have:

Dj|dTH | = (|rs × rt|.Djυ − υ.Dj |rs × rt|)/|rs × rt|2, (10)

where Dj = ∂/∂cj. All these terms are based on the coordinates of the in-
tersections, and since every intersection r, s, and t is implicitly related to the
parameter vector, the derivations could be easily computed like (7).

4 Experimental Results

Two major approaches, the algebraic and geometric one, with their extensions
have been presented. Algebraic methods are quite fast, but unfortunately the
structure of the data is neglected. On the other hand, geometric methods are
more afraid of the geometry of the data, as the name implies, but they are
quite slow. The proposed method, which belongs to the geometric category, is
implemented and compared with the most important methods in the literature.

In the two dimensional case, a set of points picked from an ellipse with a
non-uniform distribution is used. Fig. 1(b) presents the result from the 3L algo-
rithm [6], which fails to fit the right ellipse, even though the case is not noisy.
However, the simple algebraic (3) manages to fit it, but the point is that the
3L algorithm is supposed to include more geometric information than the least
square approach.

Fig. 5(a) depicts the result of the proposed method for the same set of points.
Both algebraic and proposed method converge to a similar result, but problems
3 These experiments have been performed by applying smooth changes in the geometry

of the surface, which correspond to smooth changes in the parameter space.



A Novel Approach to Geometric Fitting of Implicit Quadrics 129

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−3 −2 −1 0 1 2 3 4 5

−3

−2

−1

0

1

2

3

(a) (b)

Fig. 5. Fitting a 2D set of points picked non-uniformly from an ellipse. (a) Without
noise: Algebraic (dotted line) and proposed method (solid line) both reach similar
results. (b) Noisy data case: Algebraic method (dotted line) misses the elliptic structure,
while the proposed approach (solid line) reaches a good result.

arise when some noise is added to the points. Fig. 5(b) highlights the robustness
of the proposed method to noise; whereas the algebraic one missed the elliptic
structure of the data, and fitted the patch as a split hyperbola. Fitzgibbon et.
al. [15] proposed a fitting method just for 2D elliptic cases based on algebraic
approaches. From this simple example, one can understand the hardship for
algebraic methods when the function space is bigger than the quadratic one.

The proposed approach has been also compared with the state of the art
by using real range images obtained with the the K2T structured light camera
system, University of South Florida. A first data set, from a spherical object, is
presented in Fig. 1(a). It contains 1000 points, and as indicated in that figure, the
algebraic method fails to fit the right sphere; since this approach is just trying
to put the algebraic value of the quadratic function closer to zero, a wrong
result is achieved. Fig. 6 shows the result obtained by the proposed method,
when the same set of points is considered. In this case a sphere with a bigger
radius covering the whole data set has been used as an initialization. The whole
process took 4.26 sec. in a 3.2GHz Pentium IV PC with a non-optimized Matlab
code. The other geometric method, proposed by [7], reaches similar result but 10
times slower. Since at each parameter refinement iteration there are additional
iterations to find the foot-points.

Fig. 7 shows a 3D patch picked from a cylinder corrupted by a Gaussian noise.
This patch was generated and rotated in a synthetic way. Three different methods
are compared based on the accumulated real distances from the points to the
achieved surface, computed by using [7]. Fig. 7(a) and (c), respectively, show
the results of the 3L algorithm [6] and the proposed method. Both images show
similar result, one concave and the other one convex though. The first one has
an accumulated real distance of 28.90 and the proposed one has an accumulated
distance of 5.45, which is more than five times smaller. Fig. 7(b) shows the result
from another geometric approach [7]. This result has the lowest distance (5.24),
and it is still a cylinder, but it took more than five times compared with the
proposed algorithm.
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Fig. 7. Fitting of the 3D patch of a cylinder disrupted by gaussian noise for:
(a) the 3L algorithm[6]; (b) the geometric method proposed by [7]; (c) the proposed
method

In the last example another comparison is presented. This time a part of a
noisy ellipsoid is used as an input of both algebraic and geometric approaches.
Fig. 8(a) illustrates how the simple algebraic method (3) misses the elliptic struc-
ture of the patch, and gives a hyperboloid. This example shows the importance
of using geometric clues. Fig. 8 (b) and (c) illustrate the 3L results, with dif-
ferent parameters. As mentioned in section 2.1, the 3L algorithm, as the name
stands for, needs two other data sets that are offsets of the original one. Here,
the offsets are constructed with different user defined parameters, which show
the amounts of translation. Fig. 8(c) shows the result of the 3L method with
a smaller parameter; so as we continue to squeeze the offset, the result makes
more sense, but unfortunately after a while on, since the data is noisy, three
level sets merged together and the whole procedure collapses. Finally, Fig. 8(d))
depicts the result of the proposed method, which manages to fit the data and
maintain the elliptic curvature as well. It should be mentioned that, the pro-
posed distance estimation does not need any parameter adjustment. The result
from [7] is skipped, because it obtains quite the same result but with a slower
convergence.
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Fig. 8. Fitting 3D points picked from an ellipsoid with a non-uniform distribution.
Final results from: (a) the simple algebraic method (3); (b) and (c) the results of the
3L algorithm [6] with different set parameters; and (d) proposed method.

5 Conclusions

This paper presents a throughout study of state of the art fitting methods.
Furthermore, a novel geometric distance estimation is proposed. Despite other
geometric estimations, which are based on one direction to find the foot-point
associated to each data point, the proposed one is based on three different di-
rections; hence it does not need any iterations. This approximation value has
been used with a LMA optimization framework. In that framework an iterative
approach finds the best set of surface parameters. Compared with other geo-
metric methods, instead of relying on a costly iterative approach to find the
foot-points, a direct way is proposed. As a conclusion, it can be said that even
though several algorithms have been proposed for quadric fitting there is a trade
off between CPU time and accuracy of surface parameters for selecting the best
one; this trade off get more evident when it is increased the number of points
to be fitted or the percentage of noise. The only concern arises in the proposed
method when no intersection could be found for some data points; however, the
proposed method is flexible enough to apply there other direction instead of the
coordinate axis. Future work will study this possibility.
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