
Improving Appearance-Based 3D Face Tracking Using
Sparse Stereo Data�

Fadi Dornaika and Angel D. Sappa

Computer Vision Center
Edifici O Campus UAB

08193 Bellaterra, Barcelona, Spain
{dornaika,sappa}@cvc.uab.es

Abstract. Recently, researchers proposed deterministic and statistical
appearance-based 3D head tracking methods which can successfully tackle the
image variability and drift problems. However, appearance-based methods ded-
icated to 3D head tracking may suffer from inaccuracies since these methods
are not very sensitive to out-of-plane motion variations. On the other hand, the
use of dense 3D facial data provided by a stereo rig or a range sensor can pro-
vide very accurate 3D head motions/poses. However, this paradigm requires ei-
ther an accurate facial feature extraction or a computationally expensive regis-
tration technique (e.g., the Iterative Closest Point algorithm). In this paper, we
improve our appearance-based 3D face tracker by combining an adaptive appear-
ance model with a robust 3D-to-3D registration technique that uses sparse stereo
data. The resulting 3D face tracker combines the advantages of both appearance-
based trackers and 3D data-based trackers while keeping the CPU time very close
to that required by real-time trackers. We provide experiments and performance
evaluation which show the feasibility and usefulness of the proposed approach.

Keywords: 3D face tracking, adaptive appearance models, evaluation, stereo, ro-
bust 3D registration.

1 Introduction

The ability to detect and track human heads and faces in video sequences is useful
in a great number of applications, such as human-computer interaction and gesture
recognition. There are several commercial products capable of accurate and reliable
3D head position and orientation estimation (e.g., the acoustic tracker system Mouse
[www.vrdepot.com/vrteclg.htm]). These are either based on magnetic sen-
sors or on special markers placed on the face; both practices are encumbering, causing
discomfort and limiting natural motion. Vision-based 3D head tracking provides an at-
tractive alternative since vision sensors are not invasive and hence natural motions can
be achieved (Moreno et al., 2002). However, detecting and tracking faces in video se-
quences is a challenging task.

Recently, deterministic and statistical appearance-based 3D head tracking methods
have been proposed and used by some researchers (Cascia et al., 2000; Ahlberg, 2002;
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Matthews and Baker, 2004). These methods can successfully tackle the image variabil-
ity and drift problems by using deterministic or statistical models for the global appear-
ance of a special object class: the face. However, appearance-based methods dedicated
to full 3D head tracking may suffer from some inaccuracies since these methods are
not very sensitive to out-of-plane motion variations. On the other hand, the use of dense
3D facial data provided by a stereo rig or a range sensor can provide very accurate
3D face motions. However, computing the 3D face motions from the stream of dense
3D facial data is not straightforward. Indeed, inferring the 3D face motion from the
dense 3D data needs an additional process. This process can be the detection of some
particular facial features in the range data/images from which the 3D head pose can
be inferred. For example, in (Malassiotis and Strintzis, 2005), the 3D nose ridge is de-
tected and then used for computing the 3D head pose. Alternatively, one can perform a
registration between 3D data obtained at different time instants in order to infer the rela-
tive 3D motions. The most common registration technique is the Iterative Closest Point
(ICP) (Besl and McKay, 1992). The ICP algorithm and its variants can provide accurate
3D motions but their significant computational cost prohibits real-time performance.

The main contribution of this paper is a robust 3D face tracker that combines the
advantages of both appearance-based trackers and 3D data-based trackers while keeping
the CPU time very close to that required by real-time trackers. First, the 3D head pose
is recovered using an appearance registration technique. Second, the obtained 3D head
pose is utilized and refined by robustly registering two 3D point sets where one set is
provided by stereo reconstruction.

The remainder of this paper proceeds as follows. Section 2 introduces our deformable
3D facial model. Section 3 states the problem we are focusing on, and describes the on-
line adaptive appearance model. Section 4 summarizes the adaptive appearance-based
tracker that tracks in real-time the 3D head pose and some facial actions. Section 5
gives some evaluation results associated with the appearance-based tracker. Section 6
describes the improvement step based on a robust 3D-to-3D registration and the appear-
ance model. Section 7 gives some experimental results.

2 Modeling Faces

2.1 A Deformable 3D Model

In our study, we use the 3D face model Candide. This 3D deformable wireframe model
was first developed for the purpose of model-based image coding and computer anima-
tion. The 3D shape of this wireframe model is directly recorded in coordinate form. It
is given by the coordinates of the 3D vertices Pi, i = 1, . . . , n where n is the number
of vertices. Thus, the shape up to a global scale can be fully described by the 3n-vector
g; the concatenation of the 3D coordinates of all vertices Pi. The vector g is written as:

g = gs + A τa (1)

where gs is the static shape of the model, τa the animation control vector, and the
columns of A are the Animation Units. In this study, we use six modes for the facial
Animation Units (AUs) matrix A. Without loss of generality, we have chosen the six
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following AUs: lower lip depressor, lip stretcher, lip corner depressor, upper lip raiser,
eyebrow lowerer and outer eyebrow raiser. These AUs are enough to cover most com-
mon facial animations (mouth and eyebrow movements). Moreover, they are essential
for conveying emotions.

In equation (1), the 3D shape is expressed in a local coordinate system. However, one
should relate the 3D coordinates to the image coordinate system. To this end, we adopt
the weak perspective projection model. We neglect the perspective effects since the
depth variation of the face can be considered as small compared to its absolute depth.
Thus, the state of the 3D wireframe model is given by the 3D head pose parameters
(three rotations and three translations) and the internal face animation control vector
τa. This is given by the 12-dimensional vector b:

b = [θx, θy, θz , tx, ty, tz, τa
T ]T (2)

2.2 Shape-Free Facial Patches

A face texture is represented as a shape-free texture (geometrically normalized image).
The geometry of this image is obtained by projecting the static shape gs using a centered
frontal 3D pose onto an image with a given resolution. The texture of this geometrically
normalized image is obtained by texture mapping from the triangular 2D mesh in the
input image (see figure 1) using a piece-wise affine transform, W . The warping process
applied to an input image y is denoted by:

x(b) = W(y, b) (3)

where x denotes the shape-free texture patch and b denotes the geometrical parameters.
Several resolution levels can be chosen for the shape-free textures. The reported results
are obtained with a shape-free patch of 5392 pixels. Regarding photometric transfor-
mations, a zero-mean unit-variance normalization is used to partially compensate for
contrast variations. The complete image transformation is implemented as follows: (i)
transfer the texture y using the piece-wise affine transform associated with the vector b,
and (ii) perform the grey-level normalization of the obtained patch.

(a) (b)

Fig. 1. (a) an input image with correct adaptation. (b) the corresponding shape-free facial image.
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3 Problem Formulation

Given a video sequence depicting a moving head/face, we would like to recover, for
each frame, the 3D head pose and the facial actions encoded by the control vector τa. In
other words, we would like to estimate the vector bt (equation 2) at time t given all the
observed data until time t, denoted y1:t ≡ {y1, . . . , yt}. In a tracking context, the model
parameters associated with the current frame will be handed over to the next frame.

For each input frame yt, the observation is simply the warped texture patch (the
shape-free patch) associated with the geometric parameters bt. We use the HAT symbol
for the tracked parameters and textures. For a given frame t, b̂t represents the computed
geometric parameters and x̂t the corresponding shape-free patch, that is,

x̂t = x(b̂t) = W(yt, b̂t) (4)

The estimation of b̂t from the sequence of images will be presented in the next
Section.

The appearance model associated with the shape-free facial patch at time t, At, is
time-varying on that it models the appearances present in all observations x̂ up to time
(t− 1). We assume that the appearance model At obeys a Gaussian with a center μ and
a variance σ. Notice that μ and σ are vectors composed of d components/pixels (d is the
size of x) that are assumed to be independent of each other. In summary, the observation
likelihood at time t is written as

p(yt|bt) = p(xt|bt) =
d∏

i=1

N(xi; μi, σi) (5)

where N(x; μi, σi) is the normal density:

N(x; μi, σi) = (2πσ2
i )−1/2 exp

[
−1

2

(
x − μi

σi

)2
]

(6)

We assume that At summarizes the past observations under an exponential envelop,
that is, the past observations are exponentially forgotten with respect to the current
texture. When the appearance is tracked for the current input image, i.e. the texture x̂t is
available, we can compute the updated appearance and use it to track in the next frame.

It can be shown that the appearance model parameters, i.e., μ and σ can be updated
using the following equations (see (Jepson et al., 2003) for more details on Online Ap-
pearance Models):

μt+1 = (1 − α)μt + α x̂t (7)

σ2
t+1 = (1 − α)σ2

t + α (x̂t − μt)2 (8)

In the above equations, all μ’s and σ2’s are vectorized and the operation is element-
wise. This technique, also called recursive filtering, is simple, time-efficient and there-
fore, suitable for real-time applications. The appearance parameters reflect the most
recent observations within a roughly L = 1/α window with exponential decay.
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Note that μ is initialized with the first patch x̂0. In order to get stable values for the
variances, equation (8) is not used until the number of frames reaches a given value (e.g.,
the first 40 frames). For these frames, the classical variance is used, that is, equation (8)
is used with α being set to 1

t .
Here we used a single Gaussian to model the appearance of each pixel in the shape-

free patch. However, modeling the appearance with Gaussian mixtures can also be
used on the expense of some additional computational load (e.g., see (Zhou et al., 2004;
Lee, 2005)).

4 Tracking Using Adaptive Appearance Registration

We consider the state vector b = [θx, θy, θz, tx, ty, tz, τa
T ]T encapsulating the 3D head

pose and the facial actions. In this section, we will show how this state can be recovered
for time t from the previous known state b̂t−1 and the current input image yt.

The sought geometrical parameters bt at time t are related to the previous parameters
by the following equation (b̂t−1 is known):

bt = b̂t−1 + Δbt (9)

where Δbt is the unknown shift in the geometric parameters. This shift is estimated
using a region-based registration technique that does not need any image feature ex-
traction. In other words, Δbt is estimated such that the warped texture will be as close
as possible to the facial appearance At. For this purpose, we minimize the Mahalanobis
distance between the warped texture and the current appearance mean,

min
bt

e(bt) = min
bt

D(x(bt), μt) =
d∑

i=1

(
xi − μi

σi

)2

(10)

The above criterion can be minimized using iterative first-order linear approximation
which is equivalent to a Gauss-Newton method. It is worthwhile noting that the mini-
mization is equivalent to maximizing the likelihood measure given by (5). Moreover, the
above optimization is carried out using Huber function (Dornaika and Davoine, 2004).

In the above optimization, the gradient matrix
∂W(y

t
,bt)

∂bt
= ∂xt

∂bt
is computed for

each frame and is approximated by numerical differences similarly to the work of
Cootes (Cootes et al., 2001).

On a 3.2 GHz PC, a non-optimized C code of the approach computes the 3D head
pose and the six facial actions in 50 ms. About half that time is required if one is only
interested in computing the 3D head pose parameters.

5 Accuracy Evaluation

The monocular tracker described above provides the time-varying 3D head pose (espe-
cially the out-of-plane parameters) with some inaccuracies whose magnitude depends
on several factors such as the absolute depth of the head, the head orientation, and the
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Fig. 2. 3D head pose errors computed by the ICP algorithm associated with a 300-frame long
sequence
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camera parameters. We have evaluated the accuracy of the above proposed monocu-
lar tracker using ground truth data that were recovered by the Iterative Closest Point
algorithm (Besl and McKay, 1992) and dense 3D facial data.

Figure 2 depicts the monocular tracker errors associated with a 300-frame long
sequence which contains rotational and translational out-of-plane head motions. The
nominal absolute depth of the head was about 65 cm, and the focal length of the
camera was 824 pixels. As can be seen, the out-of-plane motion errors can be large
for some frames for which there is a room for improvement. Moreover, this evalu-
ation has confirmed the general trend of appearance-based trackers, that is, the out-
of-plane motion parameters (pitch angle, yaw angle, and depth) are more affected by
errors than the other parameters. More details about accuracy evaluation can be found
in (Dornaika and Sappa, 2005).

One expects that the monocular tracker accuracy can be improved if an additional
cue is used. In our case, the additional cue will be the 3D data associated with the mesh
vertices provided by stereo reconstruction. Although the use of stereo data may seem
as an excess requirement, recall that cheap and compact stereo systems are now widely
available (e.g., [www.ptgrey.com]).

We point out that there is no need to refine the facial feature motions obtained by
the above appearance-based tracker since their independent motion can be accurately
recovered. Indeed, these features (the lips and the eyebrows) have different textures, so
their independent motion can be accurately recovered by the appearance-based tracker.

6 Improving the 3D Head Pose

The improved 3D face tracker is outlined in Figure 3. The remainder of this section de-
scribes the improvement steps based on sparse stereo-based 3D data. Since the monoc-
ular tracker provides the 3D head pose by matching the input texture with the adaptive
facial texture model (both textures correspond to a 2D mesh), it follows that the out-of-
plane motion parameters can be inaccurate even when most of the facial features project
onto their true location in the image. We use this fact to argue that the appearance-based
tracker will greatly help in the sense that it will provide the putative set of 3D-to-3D
correspondences through the 2D projections. Our basic idea is to start from the 3D
head pose provided by the monocular tracker and then improve it by using some sparse
3D data provided by stereo reconstruction. Here we use the estimated six degrees of
freedom as well as the corresponding projection of all vertices. The estimated 3D head
pose will be used for mapping the 3D mesh in 3D space while the 2D projections of the
vertices will be processed by the stereo system in order to get their 3D coordinates.

Fig. 3. The main steps of the developed robust 3D face tracker
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Fig. 4. (M) A 3D facial patch model positioned using the estimated 3D head pose. (S) the
same 3D patch (three vertices) provided by stereo reconstruction. Top: An ideal case where
the appearance-based 3D head pose corresponds to the true 3D head pose. Bottom: A real case
where the appearance-based 3D head pose does not exactly correspond to the true 3D head pose.
It follows that the improvement is simply the rigid 3D displacement [R|T] that aligns the two sets
of vertices.

Improving the 3D head pose is then carried out by combining a robust 3D-to-3D reg-
istration and the appearance model. The robust 3D registration uses the 3D mesh ver-
tices (the 3D model is mapped with the estimated 3D head pose) and the corresponding
3D coordinates provided by the stereo rig while the appearance model is always given
by (10). Recall that the stereo reconstruction only concerns the image points resulting
from projecting the 3D mesh vertices onto the image. Since our 3D mesh contains about
one hundred vertices the whole refinement step will be fast.

Figure 4 illustrates the basic idea that is behind the improvement step, namely the
robust 3D registration. Figure 4 (Top) illustrates an ideal case where the estimated
appearance-based 3D head pose corresponds to the true 3D pose. In this case, the ver-
tices of the 3D mesh after motion compensation coincide with their corresponding 3D
points provided by the stereo rig. Figure 4 (Bottom) illustrates a real case where the
estimated appearance-based 3D head pose does not correspond exactly to the true one.
In this case, the improvement can be estimated by recovering the 3D rigid displacement
[R|T] between the two sets of vertices.

We point out that the set of vertex pairs may contain some outliers caused for
instance by occluded vertices. Thus, the 3D registration process must be robust.
Robust 3D registration methods have been proposed in recent literature (e.g., see
(Chetverikov et al., 2005; Fitzgibbon, 2003)). In our work, we use a RANSAC-like
technique that computes an adaptive threshold for outlier detection. The whole improve-
ment algorithm is outlined in Figure 5. As can be seen, the final solution (see the second
paragraph in Figure 5) takes into account two criteria: i) the 3D-to-3D registration, and
ii) the adaptive appearance model.

Inlier detection. The question now is: Given a subsample k and its associated solu-
tion Dk, How do we decide whether or not an arbitrary vertex is an inlier? In techniques
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Random sampling: Repeat the following three steps K
times

1. Draw a random subsample of 3 different pairs of
vertices. We have three pairs of 3D points {Mi ↔
Si}, i = 1, 2, 3.

2. For this subsample, indexed by k (k = 1, . . . , K),
compute the 3D rigid displacement Dk = [Rk|Tk],
where Rk is a 3D rotation and Tk a 3D translation,
that brings these three pairs into alignment. Rk and
Tk are computed by minimizing the residual error�3

i=1 |Si − Rk Mi − Tk|2. This is carried out using
the quaternion method (Horn, 1987).

3. For this solution Dk, compute the median Mk of the
squared residual errors with respect to the whole set
of N vertices. Note that we have N residuals cor-
responding to all vertices {Mj ↔ Sj}, j =
1, . . . , N . The squared residual associated with an
arbitrary vertex Mj is |Sj − Rk Mj − Tk|2.

Solution:

1. For each solution Dk = [Rk|Tk], k = 1, . . . , K,
compute the number of inliers among the entire set
of vertices (see text). Let nk be this number.

2. Select the 10 best solutions, i.e. the solutions that
have the highest number of inliers.

3. Refine each such solution using all its inlier pairs.
4. For these 10 solutions, compute the corresponding

observation likelihood (5).
5. Choose the solution that has the largest observation

likelihood.

Fig. 5. Recovering the 3D rigid displacement using robust statistics and the appearance

dealing with 2D geometrical features (points and lines) (Fischler and Bolles, 1981), this
is achieved using the distance in the image plane between the actual location of the fea-
ture and its mapped location. If this distance is below a given threshold then this feature
is considered as an inlier; otherwise, it is considered as an outlier. Here we can do
the same by manually defining a distance in 3D space. However, this fixed selected
threshold cannot accommodate all cases and all noises. Therefore, we use an adaptive
threshold distance that is computed from the residual errors associated with all subsam-
ples. Our idea is to compute a robust estimation of standard deviation of the residual
errors. In the exploration step, for each subsample k, the median of residuals was com-
puted. If we denote by M the least median among all K medians, then a robust estima-
tion of the standard deviation of the residuals is given by (Rousseeuw and Leroy, 1987):
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σ̂ = 1.4826
[
1 +

5
N − 3

] √
M (11)

where N is the number of vertices. Once σ̂ is known, any vertex j can be considered as
an inlier if its residual error satisfies |rj | < 3 σ̂.

Computational cost. On a 3.2 GHz PC, a non-optimized C code of the robust 3D-to-
3D registration takes on average 15 ms assuming that the number of random samples
K is set to 20 and the total number of the 3D mesh vertices, N , is 113. This computa-
tional time includes both the stereo reconstruction and the robust technique outlined in
Figure 5. Thus, by appending the robust 3D-to-3D registration to the appearance-based
tracker (described before) a video frame can be processed in about 70 ms.

7 Experimental Results

Figure 6 displays the head and facial action tracking results associated with a 300-
frame-long sequence (only four frames are shown). The tracking results were obtained
using the adaptive appearance described in Sections 4. The upper left corner of each
image shows the current appearance (μt) and the current shape-free texture (x̂t). In this
sequence, the nominal absolute depth of the head was about 80 cm.

As can be seen, the tracking results indicate good alignment between the mesh model
and the images. However, it is very difficult to evaluate the accuracy of the out-of-plane
motions by only inspecting the projection of the 3D wireframe onto these 2D images.

Therefore, we have used ground truth data for the 3D head pose parameters associ-
ated with a video sequence similar to the one shown Figure 6. The ground truth data
are recovered by means of 3D registration between dense 3D facial clouds using the
Iterative Closest Point algorithm. Figure 7 displays an accuracy comparison between
the appearance-based tacker and the improved tracker using ground-truth data. The
solid curves correspond to the errors obtained with the appearance-based tracker, and
the dashed ones correspond to those obtained with the developed approach including
the robust 3D-to-3D registration technique. The top plot corresponds to the pitch angle,
the middle plot to the vertical translation, and the bottom plot to the in-depth translation.
As can be seen, the most significant improvement affects the in-depth translation. The
noisy value of the pitch angle error could be explained by the fact the 3D rotation (im-
provement) is estimated from a small set of 3D points. However, on average the value of
the obtained error is equal to or less than the error obtained with the appearance-based
tracker.

8 Conclusion

In this paper, we have proposed a robust 3D face tracker that combines the advantages of
both appearance-based trackers and 3D data-based trackers while keeping the CPU time
very close to that required by real-time trackers. Experiments on real video sequences
indicate that the estimates of the out-of-plane motions of the head can be considerably
improved by combining a robust 3D-to-3D registration with the appearance model.
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Fig. 6. Tracking the 3D head pose with appearance-based tracker. The sequence length is 300
frames. Only frames 38, 167, 247, and 283 are shown. The six plots display the six degrees of
freedom of the 3D head pose as a function of time.
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Fig. 7. 3D head pose errors associated with the sequence as a function of the frames. From top to
bottom: pitch angle error, vertical translation error, and in-depth translation error. The solid curves
display the errors obtained with the appearance-based tracker, and the dashed ones display those
obtained with the improved tracker.
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