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Abstract This chapter tackles the challenging problem of human pose estimation
in multi-view environments to handle scenes with self-occlusions. The proposed
approach starts by first estimating the camera pose—extrinsic parameters—in multi-
view scenarios; due to few real image datasets, different virtual scenes are generated
by using a special simulator, for training and testing the proposed convolutional neu-
ral network based approaches. Then, these extrinsic parameters are used to establish
the relation between different cameras into the multi-view scheme, which captures
the pose of the person from different points of view at the same time. The proposed
multi-view scheme allows to robustly estimate human body joints’ position even in
situations where joints are occluded. The chapter concludes by presenting experi-
mental results in real scenes by using state-of-the-art and the proposed multi-view
approaches.
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1 Introduction

During the last decade, several works have focused on the Human Pose Estimation
(HPE) problem, which is usually tackled by detecting human body joints such as
wrist, head, elbow, etc. to build the human body skeleton by the connection of
all detected joints. The solutions proposed in the state-of-art are robust when all
body joints are visible by the detector. However, when joints are occluded, due
to moving objects in the scene (i.e., bicycles, cars) or natural human body pose
self-occlusions, it becomes a challenging problem, particularly, in monocular vision
system scenarios. An important aspect to take into account is that other areas of
research take advantage of the accuracy of human pose estimation to develop on totp
of it different solutions, for instance: human action recognition, gaming, surveillance,
just to mention a few. Nowadays, most of computer vision tasks (e.g., segmentation,
camera pose, object detection), including the human pose estimation problem, are
tackled by convolutional neural networks (CNN), reaching a better performance with
respect to classical approaches (e.g., [30, 6, 29, 22, 10, 2, 26]).
CNN architectures have been used in monocular vision system scenarios to solve

the human pose estimation problem, using as an input a set of images with single or
multiple-persons fromone camera to feed the architecture. Regarding this latter point,
multiple-persons, the computational cost could be increased due to the number of
body joints of each subject that the architecture has to detect in the image. Although
the obtained results are appealing, the complex poses are a challenging problem
since certain parts of the body joints could be occluded, including when other
moving objects are part of the scene. This problem could be overcome by the multi-
view approaches since the human body can be captured from different points of view
at the same time. This could allow to recover body joints occluded in one view by
using information from other cameras, with other point of view, where these body
joints are not occluded.
Some tasks such as camera pose, 3D-reconstruction, object detection (e.g., [31,

25, 5, 27], just to mention a few), where the principal problem is the occluded
regions, have been tackled by multi-view approaches. However, few works have
been proposed to tackle the human pose estimation problem by using the approach
mentioned above. Some works propose to fuse features from both views (i.e., two
cameras located in different points of view) to predict the human pose (e.g., [23, 13]),
through either the epipolar line of the images across all different views or using the
intermediate layers in early stages of the architecture to find corresponding points in
other views.
On the contrary to previous works, a compact architecture, which has been pro-

posed for monocular scenarios [16], is adapted in the current chapter to leverage
the relative camera pose in multi-view scenarios, and thus to find the relationship
between the different features of the images, which are acquired at the same time
from different views, to tackle the self-occlusion problems of the body joints. This
chapter is organized as follows. Section 2 summarizes deep learning based camera
pose estimation used to obtain the relative rotation and translation between two cam-
eras, which includes experimental results on real-world datasets and transfer learning
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from virtual environments to real-world. Then, Section 3 describes the architecture
used to estimate the human body pose in multi-view scenarios, including experi-
mental results and comparisons with other approaches of the state-of-art. Finally,
conclusions and future works are provided in Section 4.

2 Camera Pose Estimation

Most computer vision tasks require a calibration process to get camera intrinsic and
extrinsic parameters, which are used to have correspondences between the camera
and the world reference system. In general, these calibration processes are performed
by using special calibration patterns. However, during the last decade, different
proposals have been developed to estimate these parameters in an automatic way,
more specifically the extrinsic camera parameters (relative translation and rotation),
by using just the context of the images without considering special calibration
patterns.
Some difficulties are presented during the process of calibration such as illu-

mination, low resolution, few features images, becoming a challenging problem to
solve. For doing it, features detection is a key point to consider since they are used
in any camera calibration process. Different proposals have been used for feature
point detection, for instance SURF [1], ORB [24], SIFT [20] just to mention a few.
However, the accuracy of these algorithms decrements when there are not enough
features points to be matched. In order to overcome this problem, different CNN
architectures have been used in this process due to the power to extract features on
images, showing better results than classical approaches. Nowadays, these methods
are used for camera calibration, which could be divided into two categories: single
or multi-view environments.
In the single view approaches (e.g. [17, 18]), a sequence of images are used,

which are captured from the same angle and point of view. The main limitation of
these approaches is that some important features could be occluded since depend
on the angle and position of the camera in the world coordinate system, becoming a
challenging problem to solve. In the second category, i.e., multi-view approaches, the
occluded feature problem could be solved since the scene is captured from different
points of view at the same time. However, it is necessary to ensure the overlap
between the acquired images. A few works have been proposed considering multi-
view scenarios; it could be mentioned the approaches proposed by [19, 6, 9], where a
set of pairs of images is used to feed a Siamese CNN architecture for relative camera
pose estimation. In this chapter, the multi-view environment problem is considered,
where a Siamese CNN architecture is used to estimate the relative camera pose. This
architecture and its main features are presented in Section 2.1. Then, experimental
results from this Siamese architecture, on real world scenarios, are presented in
Section 2.2. Finally, a transfer learning strategy, which takes advantage of virtual
scenarios to initialize the network weights, is introduced in Section 2.3.
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Fig. 1 Siamese CNN architecture fed with pairs of images of the same scene captured from different
points of views at the same time. The extrinsic camera parameter estimation is obtained by using
the regression part, which contains three fully-connected layers.

2.1 Siamese Network Architecture

This section summarizes the Siamese CNN architecture, referred to as RelPoseTL,
that has already been presented in our previous work [4]. It is used to estimate the
relative pose between two synchronized cameras (Fig. 1 shows an illustration of
this architecture). The RelPoseTL is based on a modified Resnet-50, proposed in
[12], which has two identical branches with shared weights up to the fourth residual
block. The output of each branch is concatenated to feed the fifth residual block.
ELUs activation functions are used instead of RELUs in the residual block structures,
since it helps to speed up convergence and to avoid the vanishing gradient, as it was
mentioned in [7]. A pair of images are used to feed the architecture. These images are
acquired at the same time, but from different point of views, i.e., different positions
and orientations with respect to the real-world system. Three fully connected (fc)
layers are added after to the fourth and fifth residual block. The first two fully
connected layers fc1 and fc2 have a dimension of 1024 each one and are added
after the fourth residual block to predict the global camera pose followed by two
regressors of (3×1) and (4×1), which correspond to the global translation and rotation
concerning the real-world system respectively. The last fully-connected layer fc3 is
added to the fifth residual block. Similarly to mentioned above, this fully connected
layer has a dimension of 1024, but it is used to predict the relative camera pose,
followed by two regressors of (3×1) and (4×1) to predict the relative translation and
rotation between the given pair of images.
Global camera pose is represented by: Δ𝑝 = [𝑡, 𝑟], where 𝑡 represents the trans-

lation as a 3-dimension vector and 𝑟 represents the quaternion values of the rotation
as a 4-dimension vector. The Euclidean distance is used to estimate them:

𝑇𝐺𝑙𝑜𝑏𝑎𝑙 (𝐼) =
𝑡 − �̂�


𝛾
, (1)
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𝑅𝐺𝑙𝑜𝑏𝑎𝑙 (𝐼) =
𝑟 − �̂�

∥�̂� ∥


𝛾

, (2)

where 𝑡 and �̂� represent the ground truth and prediction of the translation respectively,
and 𝑟 is the ground truth rotation represented as quaternion values, and �̂� denotes its
prediction. The predicted rotation is normalized to a unit length as �̂�

∥�̂� ∥ . 𝐿2 Euclidean
norm is defined as 𝛾. Due to the difference in scale between both terms (translation
and rotation), the authors in [17] propose to use two learnable parameters called �̂�𝑥
and �̂�𝑦 to balance translation and rotation terms. The effect of these parameters are
similar to the one proposed in [18], where a 𝛽 parameter is used to balance both
terms. In RelPoseTL, a modified loss function that uses �̂�𝑦 as learnable parameter is
used:

𝐿𝑜𝑠𝑠𝐺𝑙𝑜𝑏𝑎𝑙 (𝐼) = 𝑇𝐺𝑙𝑜𝑏𝑎𝑙 + (𝑒𝑥𝑝( �̂�𝑦) ∗ 𝑅𝐺𝑙𝑜𝑏𝑎𝑙 + �̂�𝑦). (3)

On the other hand, the relative pose is estimated from the output of the fifth
residual block. The relative translation and rotation are obtained similarly to the
global pose estimation, which is defined as:

𝑇𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (𝐼) =
𝑡𝑟𝑒𝑙 − �̂�𝑟𝑒𝑙


𝛾
, (4)

𝑅𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (𝐼) =
𝑟𝑟𝑒𝑙 − �̂�𝑟𝑒𝑙

∥�̂�𝑟𝑒𝑙 ∥


𝛾

, (5)

where 𝑇𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 and 𝑅𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 are the differences between the ground truth (𝑡𝑟𝑒𝑙 and
𝑟𝑟𝑒𝑙) and the prediction from the trained model (̂𝑡𝑟𝑒𝑙 and �̂�𝑟𝑒𝑙). As the rotation (̂𝑟𝑟𝑒𝑙)
is predicted directly from the trained model, then it has to be normalized before. In
order to get 𝑡𝑟𝑒𝑙 and 𝑟𝑟𝑒𝑙 , the following equations are used:

𝑡𝑟𝑒𝑙 = 𝑡𝐶1 − 𝑡𝐶2, (6)

𝑟𝑟𝑒𝑙 = 𝑟∗𝐶2 ∗ 𝑟𝐶1, (7)

where 𝐶𝑖 corresponds to the pose parameters of the (𝑖) camera (i.e., rotation and
translation); these parameters are referred to the real world system; 𝑟∗

𝐶2 is the conju-
gate quaternion of 𝑟𝐶2. Similarly to the Eq. (3), the loss function used to obtain the
relative pose is defined as:

𝐿𝑜𝑠𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (𝐼) = 𝑇𝑅𝑒𝑙 + (𝑒𝑥𝑝( �̂�𝑦) ∗ 𝑅𝑅𝑒𝑙 + �̂�𝑦). (8)

Note that 𝐿𝑜𝑠𝑠𝐺𝑙𝑜𝑏𝑎𝑙 in Eq. (3) and 𝐿𝑜𝑠𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 in Eq. (8) are applied for
different purposes. The first one is used to predict global pose through each branch
of the trained model, where each branch is fed by images captured at the same
scenario from different points of view. While the second one predicts the relative
pose between pairs of images by concatenating the Siamese Network (see Fig. 1).
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Fig. 2 Real world images of Cambridge Landmarks dataset [18] used for training and evaluating
the RelPoseTL architecture.

Table 1 Comparison of average errors (extrinsic parameters) between RelPoseTL and Pose-MV
on ShopFacade and OldHospital of Cambridge Landmarks dataset.

Scene / Models Pose-MV [6] RelPoseTL[4]

ShopFacade 1.126m, 6.021º 1,002m, 3.655º
OldHospital 5.849m, 7.546º 3.792m, 2.721º

Average 3.487m, 6.783º 2.397m, 3.188º

The RelPoseTL was jointly trained with Global and Relative Loss, as shown in Eq.
(9):

𝐿 = 𝐿𝑜𝑠𝑠𝐺𝑙𝑜𝑏𝑎𝑙 + 𝐿𝑜𝑠𝑠𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 . (9)

2.2 Results from Real World Datasets

The RelPoseTL architecture presented in the previous section has been trained
and evaluated using the Cambridge Landmarks dataset [18]; Figure 2 shows some
images of this dataset, which were captured in outdoor environments. All images
are resized to 224 pixels along the shorter side; then, the mean intensity value is
computed and subtracted from the images. For the training process, the images are
randomly cropped at 224×224 pixels. On the contrary to the training stage, during
the evaluation process, a central crop is used instead of a random crop.
For the training process, the weights of Resnet-50 pretrained on ImageNet were

used to initialize layers ofRelPoseTLup to the fourth residual block, for the remaining
layers the normal distribution was used. The RelPoseTL was trained on ShopFacade
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and OldHospital of Cambridge Landmarks dataset. A set of 5900 pairs of images
of OldHospital dataset was used for the training process. A similar process was
performed but with 1300 pairs of images of ShopFacade dataset. The architecture
was trained during 500 epoch for both datasets, which approximately took 7 hours
and 3 hours respectively. For the evaluation process, a set of 2100 pairs of images
from the OldHospital dataset and a set of 250 pairs of images from ShopFacade
dataset have been considered.
In order to evaluate the performance of RelPoseTL, angular error and Euclidean

distance error are considered. The first is used to compute the rotation error; it is
computedwith a 4-dimensional vector.While, the second one is used to computed the
distance error between ground truth and the estimated value using a 3-dimensional
vector. Table 1 depicts average errors on rotation and translation for both datasets,
obtained with the RelPoseTL network and with the Pose-MV network [6]. It can be
appreciated that the translation error obtained by the RelPoseTL improves the results
of Pose-MV in about 32%, and about 53% when the rotation error is compared
between the RelPoseTL and Pose-MV.

2.3 From Virtual Environments to Real World

As an extension to the results obtained in the previous section, where the RelPoseTL
architecture has been trained with real data, in this section a novel training strategy is
proposed. It consists on first training the networkwith synthetic images obtained from
a virtual environment and then, use this weights as an initialization when training
again the network but with images from real scenarios. This strategy is intended to
improve results from real data since the training of the network does not start from
scratch but from a pre-trained set. An advantage of using virtual environments is
the possibility of generating an almost unlimited set of synthetic images considering
different conditions, actors and scenarios, i.e., weather, illumination, pedestrian,
road, building, vehicles. Furthermore, an additional advantage lies on the fact that the
ground truth is automatically obtained, reducing human error when the datasets are
manually annotated. Different engines could be used to design virtual environments
and aquire such a kind of synthetic pairs of images (e.g., CARLA Simulator [8],
Virtual KITTI [11], Video Game engines, just to mention a few). In the current
work different synthetic datasets have been generated using the CARLA simulator,
an open-source software tool [8]. Among the tools offered by CARLA simulator,
there is an editor that allows you to modify existing virtual worlds, as well as to
create new scenarios from scratch; this editor integrates both CARLA simulator and
Unreal Engine, which is a video game engine that CARLA is based on.
It should be mentioned that synthetic images generated from virtual environments

and the real images used for final training could have different features spaces and
distribution, hence a Domain Adaptation (DA) strategy should be used to transfer the
knowledge from one domain to other. Depending on the relationship between both
domains, transferring the knowledge learned from virtual to real environments can be
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performed in one-step or multi-step DA. For the first case, both domains are directly
related since the features spaces are similar. In the second case, a intermediate
domain, which should be highly related with both domains, is necessary. In this
section, the strategy proposed in [4] will be followed. It consist on creating 3D
virtual scenarios with a similar structure to the datatsets of real images, in our case
OldHospital and KingsCollege datasets. This similarity should be not only on the
shape and distribution of objects in the scene, but also on the way images are acquired
(i.e., similar relative distance and orientation between the cameras and objects in the
scene for the generation of synthetic images).

Fig. 3 Synthetic images generated using CARLASimulator tool. (2nd row) Virtual scenario similar
to OldHospital dataset. (4th row) Virtual scenario similar to KingsCollege dataset.

In order to generate the two datasets with synthetic images similar to OldHospital
and KingsCollege datasets, two 3D virtual scenarios are considered. These 3D
virtual scenarios have similar structure to the real scenarios, i.e., they should have
the same feature spaces (objects’ geometry and camera point of view). Figure 3



Human Body Pose Estimation in Multi-View Environments 9

Fig. 4 (a) RelPoseTL is trained using synthetic images generated from CARLA Simulator. (b) The
learned knowledge is used to apply DA strategy using real images. (c) Updated weights after DA
strategy are used to estimate relative camera pose (i.e., relative translation and rotation).

shows illustrations of the virtual scenarios generated from the CARLA Simulator
tool. The Dataset 1 and Dataset 2 are similar to the OldHospital and KingsColleges
datasets respectively. Additionally, two virtual cameras were also considered. The
camerasmove in these virtual scenarios and acquire pair of images. The cameras start
the trajectories with a given initial position and orientation with respect to the world
reference system. Then, the pair of cameras moves together randomly and change
their relative orientation also randomly. The images are simultaneously acquired for
each camera when there is enough overlap between their field of view. This process
generates about 3000 synthetic images from both synchronized cameras, for each
scenario; it takes about three hours for each scenario. The overlap between pairs
of synthetic images is computed with OpenMVG [21], where a minimum of 60%
overlap between acquired synthetic images is imposed.
Once datasets with synthetic images have been generated as mentioned above, the

RelPoseTL model is trained by initializing all layers of the architecture as presented
in Section 2.2. The Adam optimizer is used for the training process with batch size of
32 and learning rate of 10−4. The synthetic images were resized to 224×224 pixels,
including data normalization for training process. A set of 8124 pairs of images
was considered to train the architecture, which took about 30 hour per dataset till
convergence was reached. During the evaluation phase, images were pre-processed
as mentioned above. A set of 2048 pairs of images from each of the two datasets was
used.
Finally, in order to transfer the knowledge learned in the synthetic image domain to

the new domain (i.e., real-world), the Domain Adaptation (DA) strategy is applied.
It consists on training again the RelPoseTL architecture but now with just a few
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pairs of real-world images; the weights from the synthetic image domain are used
as initialization. It helps to speed up the training process as well as to avoid the
time consuming ground truth generation on real-world images. This strategy is also
referred in the literature to as transfer learning. Figure 4 shows an illustration of
this DA strategy. In details, each layer of RelPoseTL is initialized with the learned
weights from the training process using synthetic images, which should be similar
to the real-world scenarios. In order to show the advantages of this strategy, in this
section, sets of (256, 512 and 1024) pairs of images from the real-world scenario are
considered. These images are from the OldHospital and KingsCollege of Cambridge
Landmark dataset [18]. They are used to train the model and results are compared
with those obtained by initializing the network with the weights obtained from the
synthetitc image domain. In order to compare the results obtained when the network
is initialized with ImageNet weights or with those from the synthetic scenario—
the DA strategy—three sets of 64, 128 and 256 pairs of real-world images are
considered. Quantitative results are presented in Table 2 and Table 3. Angular error
is used to evaluate the rotation error from the estimated quaternion. On the other
hand Euclidean error is used to measure the error between the estimated translation
and ground truth value. In the case of OldHospital dataset, the DA strategy, which
consists on using initially the Dataset 1 for training the model from scratch and
then transferring the learned knowledge for retraining the model with just few real
images, reaches the best result. This best result has been obtained in all cases, even
if they are compared with the model trained using just the real images dataset. A
similar process was performed with KingsCollege dataset using Dataset 2 where
the results are the best even if the model is just trained using real images dataset,
showing that the similarity of features spaces (i.e., 3D scenario used to represent the
real environments) as well as in the camera pose (i.e., relative distance between the
cameras and the objects in the scene as well as their relative orientation) helps to
improve the camera pose estimation when DA is applied.

Table 2 Angular and Euclidian distance errors of RelPoseTL [4] trained with real datat (RD) and
with the domain adaptation (DA) strategy on pairs of images (PoI) from OldHospital dataset; on
the first row RelPoseTL is initialized with ImageNet weights, while in the second row the weights
are obtained by pre-training RelPoseTL with synthetic datatset (SD1).

DA strategy on OldHospital dataset
Trained
with

Train: 256 PoI
Test: 64 PoI

Train: 512 PoI
Test: 128 PoI

Train: 1024 PoI
Test: 256 PoI

RD (Init. ImageNet) 4.29m, 5.72º 3.93m, 4.04º 3.48m, 3.95º
RD (Init. SD1) 3.55m, 5.59º 3.40m, 3.70º 3.20m, 3.54º
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Table 3 Angular and Euclidian distance errors of RelPoseTL [4] trained with real datat (RD) and
with the domain adaptation (DA) strategy on pairs of images (PoI) from KingsCollege dataset; on
the first row RelPoseTL is initialized with ImageNet weights, while in the second row the weights
are obtained by pre-training RelPoseTL with synthetic datatset (SD2).

DA strategy on KingsCollege dataset
Trained
with

Train: 256 PoI
Test: 64 PoI

Train: 512 PoI
Test: 128 PoI

Train: 1024 PoI
Test: 256 PoI

RD (Init. ImageNet) 5.28m, 5.29º 3.86m, 5.08º 2.95m, 4.06º
RD (Init. SD2) 4.89m, 4.96º 3.13m, 4.18º 2.35m, 3.32º

3 Human Pose Estimation

The 2D human pose is estimated by detecting human body joints (e.g., elbow, wrist,
head, etc.) from images and then connecting them to build the human body figure.
During last years, different approaches have been proposed for the human pose
estimation (HPE), for instance OpenPose [2], DeepPose [28], Convolutional pose
machine [29], just to mentioned a few; appealing results have been shown from these
approaches, mainly when all body joints are detected. However, the natural pose
of human body generally generally involves self-occlusions that make the HPE a
challenging problem in monocular vision system scenarios.
An alternative to overcome the problems of monocular vision systems could

be by considering multi-view approaches. In these approaches, since the human
body is captured from different points of view at the same time, occluded joints
from one view can be observed from another view. The multi-view approaches
have been already used to tackle the region occlusion problem in certain tasks
such as 3D-reconstruction, camera pose, autonomous driving, object detection (e.g.,
[31, 25, 5, 14, 27]). However, few works have leveraged the advantages of multi-view
approaches to overcome the occlusion problem in the human pose estimation. Some
works exploit the epipolar geometry of multi-view approaches to solve the region
occlusion problem as the authors in [23]. In the current work, a CNN architecture
is used to fuse all features on epipolar line of the images of all points of view
as previous step to get the predicted joints. Another approach has been proposed
in [13], where the author leveraged the extracted feature of intermediate layers to
find its corresponding points in a neighboring view to combine and robustly extract
features of each view.
The performance of these approaches allow that certain applications such as

action recognition, healthcare, or augmented reality, take advantage of the obtained
accuracy to develop different solutions. In this section a novel multi-view scheme is
presented to robustly estimate the human body pose. The architecture to tackle the
human pose estimation problem from a multi-view scheme is presented in Section
3.1. Then, experimental results are presented in Section 3.2.
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Fig. 5 CNN backbone feeds with a set of pairs of images of the same scene simultaneously acquired
from different points of view. The multi-view fusion scheme allows to estimate occluded joints with
information from other views across of the relative camera pose.

3.1 Multi-View Scheme

The multi-view scheme presented in [3], which is referred to as Mview-Joints,
tackles the self-occlusion problem in the 2D human pose estimation by considering
at least two views. It uses the CNN backbone proposed by [16], which is a variant
of Resnet-152 with learnable weights, and as output, the number of body joints is
considered.
The model is fed by a set of images containing just a single-person, which has

been captured from a multi-view system of 𝐶 calibrated and synchronized cameras
with known parameters. The images captured by themulti-view system are organized
in pairs of images using two different close views, namely, reference view 𝐼𝑚𝑟𝑒 𝑓

and source view 𝐼𝑚𝑠𝑟𝑐. Heatmaps obtained from each image, like those resulting
from the usage of the backbone [16], are fused across source view considering the
confidence of each joint and the relative camera pose, improving the accuracy of
joints from each image (see Fig. 5).
In order to estimate the 2D position of the joints (𝑝 (𝑥,𝑦) ) in the image plane, the

center of mass of each heatmap is computed as follow:

𝑝 (𝑥,𝑦) =
𝑊∑︁
𝑢=1

𝐻∑︁
𝑣=1

ℎ𝑖(𝑢,𝑣) .(ZΘ (ℎ𝑖(𝑢,𝑣) )), (10)

where ZΘ represents the function softmax; ℎ represents the ROI of the heatmaps of
𝑖-th joint and W and H correspond to the size of the heatmap ROI. For each 2D
position of each joint obtained using Eq. (10), its position in the world coordinate
system 𝑃 = (𝑋,𝑌, 𝑍) is obtained, as shown below:

𝑥𝑖 = 𝑓 𝑋
𝑍

𝑦𝑖 = 𝑓 𝑌
𝑍
, (11)

where (𝑥, 𝑦) is the 2D position of the 𝑖-th joint obtained in Eq. (10). The focal length
of the camera is defined as 𝑓 . Since the depth (𝑍) of the joint is unknown, two values
are empirically defined to solve the Eq.(11). The first one corresponds to a depth
value close to zero while the second value corresponds to a depth near to the size of
the scene, in our case it has been set to 10𝑚.
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Fig. 6 An image point 𝑝𝑠𝑟𝑐 back-projects to a ray in 3D defined by the point 𝑝𝑠𝑟𝑐 and two depth
values 𝑝𝑖 and 𝑝′

𝑖
; it is then projected to the image plane of reference view to generate the epipolar

line (𝐿).

The position in the world coordinate system of each joint is transformed using
the relative camera pose between both points of view (see Fig. 6), i.e, source and
reference view, and then, projected to the image plane, as shown below:

𝑇𝑟𝑒𝑙 = 𝑅𝑜𝑡𝑠𝑟𝑐 · (𝑇𝑟𝑒 𝑓 − 𝑇𝑠𝑟𝑐), (12)

𝑅𝑜𝑡𝑟𝑒𝑙 = 𝑄(𝑅𝑜𝑡𝑟𝑒 𝑓 .𝑇)−1 ∗𝑄(𝑅𝑜𝑡𝑠𝑟𝑐 .𝑇), (13)

𝑝
𝑟𝑒 𝑓
𝑠𝑟𝑐(𝑥,𝑦) = Δ2𝐷𝑟𝑒 𝑓 (𝑅𝑜𝑡𝑟𝑒𝑙 · (𝑃𝑖 − 𝑇𝑟𝑒𝑙)), (14)

where 𝑄(.) represents the quaternion. The rotation matrix and the translation vector
are defined as 𝑅𝑜𝑡 ∈ R3𝑥3 and𝑇 ∈ R3𝑥1 respectively. 𝑃𝑖 corresponds at 𝑖-th joint in
the world coordinate system obtained in Eq. (11). The projected line on image plane
of reference view 𝐿 is obtained using the linear equation and the point computed
in the Eq. (14). In order to obtain the depth of 𝑖-th joint of the source view, which
should be on the projected line on image plane of reference view, the intersection
between the projected line and the 2D-point of the joint computed in the reference
view 𝑝𝑟𝑒 𝑓 (𝑥,𝑦) is performed.
The confidence of the two different 2D positions in the plane of the reference

image of the 𝑖-th joint, where the first corresponds to the reference view 𝑝𝑟𝑒 𝑓 (𝑥,𝑦) and
the second, a projected joint from source to reference view 𝑝

𝑟𝑒 𝑓
𝑠𝑟𝑐(𝑥,𝑦) , is computed as

the distance between the ground truth of 2D position of 𝑖-th joint and the estimated
2D positions of 𝑖-th joints. These confidence values are used as shown in Eq. (16).
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Fig. 7 Human3.6m dataset used for the training and evaluation processes. The subject is captured
from different point of views considering the four calibrated and synchronized cameras located in
each corner of the room.

𝜔 = 1 −
���� 𝐷Δ (𝛾𝑖 , 𝛾𝑖)∑

𝐷Δ (𝛾𝑖 , 𝛾𝑖)

���� , (15)

𝛿𝑢𝑝𝑑𝑖(𝑥,𝑦)
= 𝜔 ∗ 𝑝𝑖(𝑥,𝑦) , (16)

where (�̂� , 𝛾) represent the ground truth and prediction of 2D position of 𝑖-th joint
respectively, and 𝜔 corresponds to the confidence of the points of 𝑖-th joints in the
reference view.
The enhanced 2D position of 𝑖-th joint is denoted as 𝛿𝑢𝑝𝑑𝑖(𝑥,𝑦) , which considers

the information and confidence of 𝑖-th joint projected from the source to reference
view. In order to minimize the error between the enhanced 2D position of 𝑖-th joint
and its ground truth in the learning process of the proposed multi-view scheme, a
loss function is defined as:

𝐿𝑜𝑠𝑠 =

𝑁∑︁
𝑖=1

𝛿𝑢𝑝𝑑𝑖(𝑥,𝑦) − 𝑝𝑖(𝑥,𝑦)


2
, (17)

where 𝑁 corresponds to the number of joints, and 𝑝𝑖(𝑥,𝑦) is the ground-truth of 𝑖-th
joint in image plane.

3.2 Results from Multi-View Approach

The Mview-Joints architecture presented in the previous section has been trained
and evaluated using the Human3.6m dataset [15]. Human3.6m is one of the largest
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publicly available benchmark, with a multi-view setup, for human pose estimation.
In details, four synchronized and calibrated cameras are considered to generate a set
of images with a single-person doing different activities (Fig. 7 shows three different
captures from the four cameras).
Sets of images of Human3.6m dataset were cropped according to the bounding

box of the person and resized to 384x384 pixels as a previous step for training
the model. Mview-Joints was firstly initialized with the weight pretrained by [16]
and trained on a set of 60k pre-processed images of Human3.6m dataset, in an
end-to-end way, until 20 epochs. This training process takes about 120 hours. The
same pre-processing is used during the evaluation phase with a set of 8k images.
In order to evaluate the performance of Mview-Joints architecture for 2D human
pose estimation, the Joint Detection Rate (JDR) is used. This metric measures the
percentage of 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙𝑙𝑦 detected joints, which uses a threshold to validate if a
joint has been 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙𝑙𝑦 detected. The threshold is defined as half of the head
size. In addition, the Euclidean distance error is used to compute the accuracy of
each human body joint estimated by the network.
Results and comparisons with state-of-the-art CNN-based approaches are pre-

sented in Table 4 and Table 5 using JDR metric. As it can be appreciated, the
improvement is most significant for shoulder, elbow and ankle joints, which incre-
ment from 96.44% to 99.65%, from 95.00% to 97.31% and from 96.62% to 97.45%,
respectively. In term of average JDR, the results obtained by Mview-Joints improves
the Epipolar transformermodel [13] about 1%, andwith respect to Cross-View fusion
[23] about 3%.

Table 4 Comparison of 2D pose estimation accuracy on Human3.6m dataset using JDR(%) as
metric. ” − ”: these entries were absent. ∗: approach presented in [23]. Υ trained again by [13]. 𝜓
approach presented in [13]. R50 and R152 are ResNet-50 and ResNet-152 respectively. Scale is the
input resolution of the network.

Net scale shlder elb wri hip knee ankle root neck head Avg

Sum epipolar line ∗ R152 320 91.36 91.23 89.63 96.19 94.14 90.38 - - - -
Max epipolar line ∗ R152 320 92.67 92.45 91.57 97.69 95.01 91.88 - - - -
Cross-View fusion ∗Υ R50 320 95.6 95.0 93.7 96.6 95.5 92.8 96.7 96.5 96.2 95.9
Cross-View fusion ∗Υ R50 256 86.1 86.5 82.4 96.7 91.5 79.0 100 93.7 95.5 95.1
Epipolar transformer 𝜓 R50 256 96.44 94.16 92.16 98.95 97.26 96.62 99.89 99.68 99.63 97.01
Mview-Joints R152 384 99.65 97.31 93.70 99.22 97.24 97.45 99.83 99.82 99.75 98.22

Table 5 shows the Euclidean distance errors. In this case the accuracy of estimated
body joints using theMview-Joints architecture is compared with respect to the CNN
backbone proposed by [16]. As it can be appreciated, body joints such as elbow,
wrist, knee, nose, head improve by 15.88%, 4.32%, 8.46%, 18.11% and 50.53%
respectively, when compared to the results obtained with CNN backbone proposed
by [16]. Since the multi-view scheme leverages the different views of the scenario,
the challenging human body pose are better estimated. Figure 8 shows some scenes
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Table 5 Comparison of average Euclidean distance error between Mview-Joints and Learning
triangulation backbone proposed by [16] on Human3.6m dataset (𝐵𝑎𝑐𝑘𝑏𝑜𝑛𝑒: Resnet 152 with
pretrained weight [16]).

Net shlder elb wri hip knee ankle root neck nose belly head Avg
Learning
triangulation Backbone 7.84 8.00 7.40 7.55 7.45 9.70 5.75 5.86 6.46 6.47 6.57 7.18

Mview-Joints Backbone +Multi-view 7.88 6.73 7.08 7.62 6.82 9.19 5.24 6.05 5.29 6.15 3.25 6.48

with self-occlusions where it can be appreciated that Mview-Joints architecture is
able to estimate the human body pose better than single view approach [16].

4 Conclusions

This chapter focuses on the challenging problem of human body pose estimation
in multi-view scenarios. It is intended to tackle self-occlusion problems by accu-
rately estimating the human body pose. Firstly, in order to put the different views
in a common framework, the relative position and orientation—extrinsic camera
parameters—between the different cameras is estimated by using a deep learning
based strategy, instead of classical calibration-pattern based approaches. In order to
train this extrinsic camera calibration network, synthetic datasets of outdoor sce-
narios are generated overcoming the limitation of lack of annotated real-world data.
Then, once relative pose between cameras is estimated, human body pose in the
multi-view scenario is obtained by using an adaptation of an architecture initially
intended for single view scenarios. Experimental results of estimated human pose
and comparisons with state-of-the-art approaches are provided showing improve-
ments on challenging scenarios. This chapter shows how information from different
views can be fused in order to reach a more accurate representation than single view
approaches, in particular when self-occlusions are considered. An important aspect
to consider is that the precision of body joint estimations is the base to solve other
related problems such as action recognition, surveillance, 3D human pose estimation
among other. Future work will be focused on extending the usage of multi-view en-
vironments to leverage the geometry of the scene, and thus, improve the 3D human
pose. Additionally, the usage of attention modules will also be considered to tackle
the occluded regions into the multi-view scheme.
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Fig. 8 Qualitative results on challenging scenarios— Mview-Joints architecture obtains better
estimations than the backbone proposed by [16].
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